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1 Introduction

Deep Learning is a sub-field within machine leaning that models high level ab-
stractions of high-dimensional and complex data. One example of such complex
and high-dimensional data is images. Consider a classification model that takes an
image as input and the class that this image belongs to (for example “cat”, “dog”
or “bike”) as output. Assume further that the image has 100× 100 = 10 000 pixels
where each pixel in the image is considered as one input variable. This makes the
problem very high-dimensional (even for such a small image). Further, the relation
between these pixel values and the actual class is far from obvious, which makes
the data very complex.

Deep neural networks, or just deep larning, have in the last 5 to 10 years proven
to be very successful to model such complex and high-dimensional data sets. In
this lab we will look at a smaller image classification task. We will learn a neural
network to read hand-written digits with up to 98% prediction accuracy. In the very
end of the lab we will load a pre-trained network that has been trained on a much
larger data set with 1 000 different classes.

This laboratory work is based on Lecture 8 and 9 together with Chapter 6 in the
SML book. Therefore, it is advisable to have the material from those lectures fresh
in mind before starting this laboratory work.

The goal of this laboratory work is to:

• Learn how to build and train a neural network

• Learn how to improve the neural network model and its training.

• Application 1: Learn how to classify hand-written digits using neural network.

• Application 2: See how a state-of-the-art deep neural network performs at
classifying real world images

• Get a glimpse of a state-of-the-art software library (PyTorch) for deep learn-
ing.

Throughout the lab we will us a software library called PyTorch. This library is
introduced in Section 2. Section 3 contains the preparatory exercises, and Section 4
contains the exercises that you do during the 4h lab session.

Important: Read Chapter 2, solve the preparatory exercises, and submit your
solutions on Studium before the lab session. Check Studium for the deadline.
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2 PyTorch

PyTorch is an open source software library for machine learning that is based on
the machine learning library Torch which is no longer actively developed. PyTorch
is developed primarily by Facebook’s artificial intelligence research group and used
by companies as well as academic research groups. It can be used for general
computations with multidimensional arrays on CPUs and GPUs, but it is tailored
especially to deep learning and neural networks.

PyTorch is natively written in Python and C++, and well documented APIs exist for
these languages. It is not the only deep learning framework, some other state-of-the-
art alternatives are TensorFlow and MXNet.

2.1 Installation

PyTorch is already installed on the Linux systems in the computer rooms where the
laboratory session is scheduled. You can either use these computers during the lab
or bring your own computer.

If you choose to use your own computer, you need to have PyTorch properly
installed before the lab. The lab assistants will not be able to assist you with the
installation process during the lab. Please consult the PyTorch documentation for
more information about the installation procedure.

Another option is to use Google Colab to work with PyTorch online. This cloud
platform also optionally provides access to GPUs which might speed up some
computations.

2.2 Introduction

A Jupyter notebook introduction.ipynb with an introduction to PyTorch can
be downloaded from Studium. Reading and running the notebook is highly recom-
mended, since it introduces important concepts and commands that are required in
the lab session.

The official PyTorch tutorials and the PyTorch documentation might be helpful
additional resources, in particular if you are looking for a more general introduction
to PyTorch. However, the introduction to PyTorch in the provided Jupyter notebook
covers everything you should know for the lab session.
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3 Preparation exercises

3.1 Softmax and cross-entropy

In Lecture 3 the logistic regression model was introduced for problems with two
classes. The class-1 probability p(y = 1|x) was modeled as

p(y = 1|x) = h(z), where z = θ0 +

p∑
j=1

xjθj , and h(z) =
ez

1 + ez
. (1)

Question 3.1: Assume that we have estimated the parameters in (1) θ̂0 . . . θ̂p using
logistic regression from a set of training data. After training, we compute z =
θ̂0 +

∑p
j=1 xj θ̂j = 1.0 for a certain test input x = [x1, . . . xp]

T. What are the
probabilities according to the logistic regression model that the corresponding
output y belongs to either of the two classes −1 or 1, i.e., what is p(y = −1|x) and
p(y = 1|x)?'

&

$

%

Answer:

In this lab we will consider classification problems with M > 2 classes. For each
input x we define M different class probabilities p(y = 1|x), . . . , p(y = M |x),
which are the probabilities that x belongs to either of the M classes.

We also extend the logistic function in (1) to a function that has these M class
probabilities as outputs. We use the softmax function mapping z = [z1, . . . , zM ]T

onto M probabilities, i.e., RM 7→ [0, 1]M . The softmax function is defined as

softmax(z) =
1∑M

l=1 e
zl

[
ez1 . . . ezM

]T
. (2)

Now we are ready to extend logistic regression model (1) to multiple classesM > 2.
This extension is defined as

p(y = m|x) = [softmax(z)]m, where zm = θm0 +

p∑
j=1

θmjxj (3)

and where [softmax(z)]m = ezm∑M
l=1 e

zl
is the mth output from the softmax function.

In contrast to logistic regression (1), we now have a set of parameters θm0, . . . , θmp

for each class m.

Question 3.2: Consider a problem with three classes {1, 2, 3} where we have
estimated all parameters θ̂mj from a training data set using the softmax model
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in (3). For a certain test input x we compute z = [z1, z2, z3]
T where z1 = 0,

z2 = −1, and z3 = 1. What are the class probabilities for the three different classes,
i.e., what are p(y = 1|x), p(y = 2|x), and p(y = 3|x)? Which class has the
highest probability?'

&

$

%

Answer:

Suppose we want to learn the parameters θ based on a training data set {xi,yi}ni=1.
Instead of letting the output yi of a data point i be an integer in {1, . . . ,M}, we
represent the mth class with a vector yi = [yi1 . . . yiM ]T, where yij = 1 if j = m,
and yij = 0 otherwise. This is also known as the one-hot encoding. For example, if
we have the three classes {1, 2, 3} we encode class m = 1 as yi = [1 0 0]T, m = 2
as yi = [0 1 0]T, and m = 3 as yi = [0 0 1]T.

As a measure of fit between true output yi = [yi1, . . . , yiM ]T and the class proba-
bilities p(yi = 1|xi), . . . , p(yi =M |xi) we use the cross-entropy loss function

L(xi,yi,θ) = −
M∑

m=1

yim ln gim, (4)

where we use the notation gim = p(yi = m|xi).

Question 3.3: Consider the class probabilities p(y = 1|x), p(y = 2|x), and
p(y = 3|x) you got from the previous exercise. Compute the cross-entropy loss
L(x,y, θ̂) between these probabilities and y(1) = [1 0 0]T, y(2) = [0 1 0]T, and
y(3) = [0 0 1]T, respectively. Which one has the lowest cross-entropy?'

&

$

%

Answer:

3.2 Dense neural network

Consider a classification problem where the input consists of p = 144 input variables
x = [x1, . . . , xp]

T and the output belongs to four classes y ∈ {1, . . . , 4}. We want
to model the class probabilities p(y = m|x) with a neural network with two dense
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layers.

q = h
(
W(1)x+ b(1)

)
, (5a)

z = W(2)q+ b(2), (5b)

p(y = 1|x) = [softmax(z)]1,

... (5c)

p(y =M |x) = [softmax(z)]M .

The hidden layer q = [q1, . . . qU ]
T has U = 30 hidden units. The weight matrices

W(1) and W(2) in each of the two dense layers have the size (output units × input
units) and each offset vector b(1) and b(2) has the size (output units).

Question 3.4: What are the sizes of the two weight matrices W(1), W(2) and the
two offset vectors b(1), b(2) in the network above? How many parameters does the
network have in total? (Each element in the weight matrices and the offset vectors
contains one parameter.)'

&

$

%
Answer:

3.3 Convolutional neural network

Consider the same classification problem as in Section 3.2 but where the 144 input
units represent 12× 12 grayscale pixels in an image. We want to model this with
a convolutional neural network (CNN). In a CNN, the hidden units in each layer
are organized in tensors1 of order 3 with the size (rows × columns × channels).
Each grayscale image in our setting has the size (12 × 12 × 1). Hence, each image
has only one channel since each grayscale pixel can be represented with one scalar
value corresponding to the brightness of that pixel2.

The design of a CNN is that in each layer, the units from the previous hidden layer
are convolved with a patch of weights, a so-called filter. We can have multiple filters
(with different parameters) operate on the same input in parallel. Each filter then
produces a new output channel for the next hidden layer. Each filter has the size
(filter rows × filter columns × input channels) and if we stack all parameters in
all filters in one weight tensor W, that tensor has size (filter rows × filter columns

1A tensor is a generalization of a matrix to more than two different dimensions. This is also what
has given Tensorflow its name since the library is used to calculate and operate on tensors.

2For a color image we would have three channels representing the three RGB colors red, green
and blue. Color images are not considered further here.
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× input channels × output channels). Read more about CNNs in Section 6.3 in
the SML book. Especially Figure 6.10 in the book might help you to answer the
questions below.

Consider a CNN with two convolutional layers parameterized with W(1),b(1),
W(2),b(2) and two dense layers parameterized with W(3),b(3),W(4),b(4). The
first convolutional layer consists of 4 filters of size (filter rows × filters columns)
= (5 × 5) and we use the stride [1,1] with zero-padding, i.e. the filter is moving
by one step (both row- and column-wise) during the convolution such that the first
hidden layer has the same number of rows and columns as the image. As previously
stated, each grayscale image in has the size (12 × 12 × 1).

Question 3.5: What are the sizes of the weight tensor W(1), offset vector b(1), and
the first hidden layer Q(1)?'
&

$
%

Answer:

In the following convolutional layer we use 8 filters of size 3 × 3 and the stride
[2,2], i.e., the filter is moving by two steps (both row- and column-wise) during the
convolution such that the second hidden layer has half as many rows and columns
as the previous first hidden layer.

Question 3.6: What is the size of the weight tensor W(2), offset vector b(2), and
the second hidden layer Q(2)?'
&

$
%

Answer:

After the two convolutional layers we implement two dense layers, the first with
60 hidden units and the second with 4 output units before we end with a softmax
function to produce the predicted class probabilities.

Question 3.7: What are the sizes of the weight tensors and offset vectors W(3),
b(3) and W(4), b(4) belonging to the two dense layers?'
&

$
%

Answer:
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4 Laboratory exercises

This section contains the laboratory exercises to be executed during the laboratory
session. The main lab exercise is to build and train a neural network to classify
hand-written digits as presented in Section 4.1. The lab ends in Section 4.2 with an
evaluation of a much bigger state-of-the-art network that has been trained on over a
million images.

4.1 Classification of hand-written digits

In this part of the lab we will learn how to use a neural network to classify images3

We will consider the so called MNIST data set4, which is one of the most well
studied data sets within machine learning and image processing.

The data set consist of 60 000 training data points and 10 000 test data points. Each
data point consist of a grayscale image with 28 × 28 pixels of a handwritten digit.
The digit has been size-normalized and centered within a fixed-sized image. Each
image is also labeled with the digit (0,1,...,8, or 9) it is depicting. In Figure 1 a batch
of 100 data points from this data set is displayed.

Figure 1: Some samples form the data we will use in the entire Section 4.1. The input is
the pixels values of an image (black and white), and the output is the label of the digit it
represents (blue).

In this classification task we consider the image as our input x = [x1, . . . xp]
T.

Each input variable xj corresponds to a pixel in the image. In total we have
p = 28× 28 = 784 input variables.

The value of each xj represents the color of that pixel. The color-value is within
the interval [0,1], where xj = 0 corresponds to a black pixel and xj = 1 to a white

3This MNIST lab is inspired by a similar one in the crash-course Learn TensorFlow and deep
learning, without a Ph.D..

4You can find more information about this data set on Wikipedia.
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pixel. Anything between 0 and 1 is a gray pixel with corresponding intensity.

We have in total 10 classes representing the 10 digits. We will use the so called
one-hot encoding for the output described in Section 3. This means that the
y = [1 0 0 0 0 0 0 0 0 0]T represents the digit “0”, y = [0 1 0 0 0 0 0 0 0 0]T

represents the digit “1”, and so forth. Consequently, the output y is of dimension
10.

Based on a set of training data {xi,yi}ni=1 with images and labels, the problem is
to find a good model for the class probabilities

p(y = m|x), m = 1, . . . , 10, (6)

i.e. the probabilities that an unseen image x belongs to each of the 10 classes.

4.1.1 Preparation

Download the zip-file code.zip from Studium, save it on your computer and
unzip it. Launch Jupyter (or Google Colab) and open mnist_onelayer.ipynb.

8
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4.1.2 Run the code sample

Task 4.1 Run the code as it is. When the training is done after a while, three figures
appear, see Figure 2. ◦
Tip 4.1 If you are using Google Colab, you can run your code on GPUs by going
to Edit → Notebook setting and selecting Python 3 and GPU. It will
give you a significant speedup, in particular when training deep neural networks
and CNNs! ◦

(a) (b) (c)

Figure 2: Three figures generated by the code. Figure 2a: Prediction performance on 100
randomly selected test points. Figure 2b: Cost function (cross-entropy) on test/training data.
Figure 2c: Prediction accuracy on test/training data.

In Figure 2a, 100 randomly selected test images (out of the total 10 000 test images)
are displayed together with their predicted label. For those images that have been
incorrectly classified, the label is colored red.

To train the network we minimize a cost function that tells how bad we are at
predicting the training data correctly. The cost function for this problem is the cross-
entropy (more about that in Section 4.1.4). Figure 2b displays the cost function on
test and training data with the iteration number on the x-axis.

In Figure 2c the prediction accuracy on test and training data5 is displayed. The
prediction accuracy on test data is the performance measure that we are mostly
interested in. The cross-entropy and prediction accuracy on both training data and
test data as displayed on the figures are also printed in the terminal during training.

Question 4.1: What classification accuracy do you get on the test data?'
&

$
%

Answer:

5The prediction accuracy on training data is evaluated on only 100 randomly selected training
samples used during training (called mini-batch). That is why the training accuracy is so “noisy”.
More about mini-batch and the training procedure in Section 4.1.4.
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4.1.3 Understand the model

The sample code is an implementation of a one-layer neural network with softmax
transformation of the output. For a certain class m and data point i with xi =
[xi1, . . . , xip]

T the model of the class probabilities is

p(yi = m|xi;θ) =
ezim∑M
l=1 e

zil
where zim = bm +

p∑
j=1

xijWjm, (7)

where θ is a vector with all the parameters Wjm and bm in the model. With n
training data points {xi,yi}ni=1 and m = 1, . . . ,M classes we can write the model
in matrix notation

G = softmax(XW + b), (8)

where

G =

g
T
1
...
gT
n

 , X =

x
T
1
...
xT
n

 , W =

W11 . . . W1M
...

...
Wp1 . . . WpM

 , b =
[
b1 . . . bM

]
,

with gT
i = [p(yi = 1 |xi;θ), . . . , p(yi = M |xi;θ)], and where W and b are the

weight matrix and the offset vector, respectively. The offset vector b is added to all
n rows in (8). Also the softmax function is applied row by row as

softmax(zTi ) =
1∑M

l=1 e
zil

[
ezi1 . . . eziM

]
, where zTi = xT

i W + b. (9)

Remember, the ith row in X (i.e., xT
i ) contains the 784 pixel values of image i and

the ith row in G (i.e., gT
i ) contains the 10 probabilities that the ith image belongs

to each of the 10 classes. The weight matrix W and the offset vector b contain all
the parameters of the model. Note that W and b is the transposed version of the
equivalent weight matrix and offset vector in (5b). We choose to do so in order to
avoid transposing W and b in the code.

Task 4.2 Make sure you understand the model above. Read the code in the section
The model and make sure that you can map the model presented above to what is
implemented. If something is unclear, ask the lab supervisors! ◦
Question 4.2: How many parameters does this model have?'

&

$

%
Answer:
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4.1.4 Understand the training

To find good parameters, we need to train the model. This requires a cost function.
The cost function describes the “distance” between the outputs yi = [yi1 . . . yiM ]T

and the predicted class probabilities p(yi = 1 |xi;θ), . . . , p(yi =M |xi;θ). Using
the notation gim for each such predicted class probability, we can write the cross-
entropy cost function

J(θ) = − 1

n

n∑
i=1

M∑
m=1

yim ln gim, (10)

where θ = {W,b} are the parameters and where gim = p(yi = m |xi;θ). Re-
member, if yi encodes the hand-written digit “3”, all ten elements in yi will be zero
except the forth element, which will be one. Each gim is a value between 0 and 1
which corresponds to the probability that the image i belongs to class m.

The training of the network is done by minimizing the cost function (10) in a loop.
In each iteration, we compute the gradient∇θJ(θ) of the cost function with respect
to the parameters and update the parameters by going a small step in the opposite
direction of the gradient

θ(t+1) := θ(t) − γ∇θJ(θ)
∣∣∣
θ=θ(t)

. (11)

This is called gradient descent and γ is the learning rate. In each gradient step
we do not use all n = 60 000 training data to compute the cost function (10) and
its gradient. Instead, we use 100 randomly selected training data points in each
iteration. We call such a group of training data a mini-batch.

Next iteration we randomly selected 100 new training data points (of the ones which
have not yet been selected) and compute the gradient based on this group of data.
We continue until all training data points have been used. One such sweep through
the training data is called an epoch. After one epoch is completed, we start the
process over again. This training procedure is called stochastic gradient.

Task 4.3 Make sure you understand the training procedure described above. Read
through the code in the section The training. Map the training procedure to what
is written in the code. Ask the lab supervisors if anything is unclear! ◦
Question 4.3: How many iterations does it take until we have seen all training data
points, i.e., how many iterations are included in each epoch? How many epochs do
you train for in the code?'
&

$
%

Answer:
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4.1.5 Train a two-layer neural network

We will now add a second layer to the network. We get the model

Q = h(XW(1) + b(1)), (12a)

G = softmax(QW(2) + b(2)), (12b)

where Q is an intermediate layer of hidden units. For this we need two weight
matrices W(1), W(2) and two offset vectors b(1), b(2)6.

U = 200 # number of hidden units
self.W1 = nn.Parameter(0.1 * torch.randn(784, U))
self.b1 = nn.Parameter(torch.zeros(U))
self.W2 = nn.Parameter(0.1 * torch.randn(U, 10))
self.b2 = nn.Parameter(torch.zeros(10))

We keep the softmax as activation function on the last layer, but use the logistic
function, also called the sigmoid function7, after the first layer. The sigmoid function
is defined as h(x) = 1/(1 + e−x). The model will then be

Q = torch.sigmoid(X.mm(self.W1) + self.b1)
G = F.softmax(Q.mm(self.W2) + self.b2, dim=1)

When we grow the network deeper, it is important to initialize the weights randomly.
In the lines above, each weight is initialized by a value drawn from a normal
distribution with standard deviation 0.1, which works fine.

Task 4.4 Save mnist_onelayer.ipynb as a new file mnist_twolayers.ipynb.
Add one more layer with 200 hidden units. ◦
Question 4.4: What classification accuracy on test data do you get? Try some
other numbers of hidden units (ranging from 10 to 750). How does it affect the
performance? What happens if you initialize the weights with zeros as we did for
the single layer neural network?'

&

$

%

Answer:

6For convenience, the weight matrices and offset vectors can be summarized in a nn.Linear
object in PyTorch. In this computer lab, however, we implement all weight matrices and offset vectors
explicitly.

7This is the same function as the logistic function (1). However, here it appears in a different
context, hence the different name.
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4.1.6 Go even deeper!

Now we can continue to go even deeper!

Task 4.5 Save mnist_twolayers.ipynb as a new file mnist_fivelayers.ipynb.
Continue to add even more layers. Add in total five layers with 200, 100, 60, and 30
hidden units between each layer. ◦
Question 4.5: What classification accuracy on test data do you get?'
&

$
%

Answer:

When you go deeper there are some things to be aware of

• The sigmoid activation function causes issues in deep networks. It squashes
all inputs into [0,1] and when doing so repeatedly in multiple layers the
gradients with respect to the parameters in the deepest layers might get close
to zero. Instead, you might consider using the Rectified Linear Unit (ReLU)
activation function h(x) = max(0, x). To use ReLU, simply replace all
torch.sigmoid in the code with F.relu.

• Initialize all weights randomly! If you have not yet done so, do that now! For
the offset vectors, when using ReLU:s, the best practice is to initialize them
to a small positive values such that it operates in the non-negative range of
ReLU. We can initialize all offset parameters with 0.1 as

b5 = nn.Parameter(torch.ones(10)/10)

• In problems where we have a lot of parameters (how many do we have now?)
we also have many so-called “saddle points”. The gradient descent algorithm
tends to get stuck at such saddle points. A better optimizer for dealing with
this problem is the Adam-optimizer. To train with that routine, simply replace
optim.SGD with optim.Adam. When swapping optimization routine also
change the learning rate from 0.5 to 0.003.

Task 4.6 Improve the training of the network by using the tips above. Does this
improve the prediction accuracy? ◦
Task 4.7 Is the model trained after 2 000 iterations or do you think you can get
an even better classification accuracy if you train longer? Try to train for 10 000
iterations. ◦
By training this deeper model longer, you might suddenly get very poor performance
due to numerical issues. Look on the next page why this happens and how to resolve
the problem.
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4.1.7 Train longer, be aware of numerical issues!

If you train the network longer, some elements in gi start getting very close to zero
(meaning that the network is very certain that image i does not belong to that class).
This is a problem in (10) since ln(0) will then output NaN (not-a-number), so also
the whole cross-entropy, and the network will not be able to train anything.

Figure 3: If some elements in gi get very close to zero, the logarithm function outputs
not-a-number and the performance crashes.

To circumvent this numerical issue, the softmax (3) and the cross-entropy (10) can be
computed in one step. Since the softmax (3) is an exponential (with normalization)
no logarithm of a small number is needed since ln(et) = t even if, say, t = −100
and e−100 ≈ 0.

In PyTorch, softmax and cross-entropy can be computed in one step with F.cross_entropy.
First we have to replace the lines

G = F.softmax(Q4.mm(self.W5) + self.b5, dim=1)
return G

with

Z = Q4.mm(self.W5) + self.b5
return Z

to obtain the so-called logits Z, and then we use F.cross_entropy instead of
crossentropy to compute the cross-entropy based on these logits.

Task 4.8 Implement the suggested change above to make the code more robust. Try
again to train for 10 000 iterations. ◦
Question 4.6: What classification accuracy on test data do you get?'
&

$
%

Answer:
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4.1.8 Use convolutional neural networks

All models that we considered so far started with putting all the 28 × 28 pixels
in each image into a long vector with 784 elements. This partially destroys the
spatial information present in the images. In contrast, a convolutional neural
network (CNN) exploits this information, which enables us to achieve an even
better classification performance. With this adjustment you should be able to reach
approximately 98.5% prediction accuracy!

We will use a CNN with three convolutional layers and two final dense layers.
The settings for the three convolutional layers are given in Table 1 and a graphical
illustration of the whole network in Figure 4.

Table 1: Architecture of the three convolutional layers.

Layer 1 Layer 2 Layer 3

Number of filters/output channels 4 8 12
Filter rows and columns (5× 5) (5× 5) (4× 4)
Stride [1,1] [2,2] [2,2]
Padding [2,2] [2,2] [1,1]

In this course, we use the convention that a weight tensor W in a convolutional
layer has the size (filter rows × filter columns × input channels × output channels).
PyTorch, however, demands weight tensors of the size (output channels × input
channels × filter rows × filter columns). Hence the weight tensor and offset vector
for the first convolutional layer are implemented as

U1 = 4
self.W1 = nn.Parameter(0.1 * torch.randn(U1, 1, 5, 5))
self.b1 = nn.Parameter(torch.ones(U1)/10)

The corresponding model implementation for that convolutional layer is

Q1 = F.relu(F.conv2d(X, self.W1, bias=self.b1, stride=1,
padding=2))

Note that we use the non-vectorized version of the images and do not reshape the
input dimensions into a vector!

We use zero-padding such that we get equally many columns and rows for Q1 as
we have for X, and hence specify padding=2. The correct padding for the other
convolutional layers can be found in Table 1.

Continue reading on the next page!
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After the three convolutional layers, we use two dense layers. Before we can apply
the first dense layer, all hidden units in the third convolutional layer needs to be
flattened into a long vector. This can be done with the command

Q3flat = Q3.view(-1, U3flat)

where the tensor Q3 holds the hidden units in the third convolutional layer and has
the size (batch size × channels × rows × columns). The command reshapes Q3
into a tensor Q3flat of size (batch size × U3flat). The vectorized Q3flat is
then the input to the first dense layer.

Question 4.7: How many hidden units are there in total in the third convolutional
layer, i.e. what is U3flat supposed to be in the code above? Hint 1: We have
applied a stride of 2 twice were each of them reduced the number of rows and
columns in the original image by a factor of 2. Hint 2: Have a look at Figure 4.'

&

$

%
Answer:

Finally, the first dense layer (layer 4) should have 200 hidden units.

Task 4.9 Save mnist_fivelayers.ipynb as a new file mnist_CNN.ipynb.
Replace the first three dense layers in the previous code with three convolutional
layers using the settings in Table 1 for each of these three layers. Add the reshap-
ing command according to what is stated above. Update the forth and fifth layer
according to the instructions above. Train for at least 4 000 iterations. Note that the
training of the CNN takes a bit longer, be patient! ◦
Tip 4.2 If you are using Google Colab, you can get a significant speedup by running
your code on GPUs (go to Edit → Notebook setting and select Python
3 and GPU). ◦
Question 4.8: What prediction accuracy do you achieve?'

&

$

%
Answer:

The next two pages contain tasks that are not mandatory (but, of course, interesting!).
The mandatory part of the lab continues in Section 4.2 on page 20.
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4.1.9 Improve learning rate* (extras, not mandatory)

In the end of the training, the learning rate γ = 0.005 is really too fast. Neither
the prediction accuracy nor the cross-entropy on test data really converges and we
will not get down to the best minimum of the cost function. You would therefore
prefer having a lot smaller γ, but with a very small γ the training takes too long.
One solution is to start learning fast (to get approximately close to the minimum)
and then slow down. Consider adjusting the learning rate γ as

γ(t) = γmin + (γmax − γmin)e
− t

2000 , (13)

where γmax = 0.003, γmin = 0.0001, and t being the iteration number. This means
that we start with a learning rate of γmax = 0.003 and approach γmin = 0.0001 as
t→∞.

You can update the learning rate of a PyTorch optimizer by running

for p in optimizer.param_groups:
p[’lr’] = gamma_new

where gamma_new is the new learning rate8.

Task (optional) 4.10 Improve the training by adjusting the learning rate according
to the formula above or any other formula that you come up with! Train for at least
6 000 iterations. You should now be able to push the prediction accuracy on the test
data above 99%! ◦
Question 4.9: Do you manage to get 99% prediction accuracy on test data?'
&

$
%

Answer:

Question 4.10: At this point, the network can start overfitting on training data.
How can you see that? What could you do to avoid this overfitting from happening?'

&

$

%

Answer:

8PyTorch itself also provides different so-called learning rate schedulers that can be used to adjust
the learning rate.
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4.1.10 Regularize with dropout* (extras, not mandatory)

When we extend our network and start seeing signs of over-fitting we know that
there is room for improvement! One way to avoid the over-fitting is to reduce
the size of the network. However, in practice a better strategy is to extend it a bit
more and add regularization to the network. In Lecture 9 we talk about a popular
regularization method for neural networks called dropout.

In dropout we remove at each training iteration a random selection of hidden units
together with its incoming and outgoing links. We then train the remaining part
of the network as if the removed units were not present. At each training iteration
a new random selection of hidden units are removed. During test time all hidden
units are used but their outputs are scaled with the probability that they were present
during training. Read more about it in Section 6.4 in the SML book.

Here we choose to add dropout to the last hidden layer, since this will affect the
weights in the first dense layer where most of the weights in our network reside.
This is implemented by adding a dropout layer to our network

self.dropout = nn.Dropout(p=pzero)

and applying it to the last hidden unit

Q4dropout = self.dropout(Q4)

where pzero is the probability that a hidden unit in that hidden layer is zeroed.
During training we keep 75% of the hidden units on average but during testing we
want to keep all hidden units. Therefore we activate the dropout layer during
training by calling net.train() and deactivate it during testing by calling
net.eval().

Task (optional) 4.11 Regularize the network by implementing dropout according
to the description above. Train for 6 000 iterations. ◦
Question 4.11: What classification performance do you achieve? Does it seem like
you are doing less overfitting?'

&

$

%
Answer:

Task (optional) 4.12 Play around with number of layers, channels, stride, filter size,
dropout, learning rate etc. to achieve an even better classification performance. For
example, extending the network to 6, 12, and 24 filters of sizes (6× 6), (5× 5), and
(4× 4) in the three convolutional layers might give an even better performance. If
you overfit again, fight back with some more dropout. ◦
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4.2 Real world image classification

We have implemented and trained a five layer CNN. We also learned how to deal
with several practical issues that appear when training a deeper network. Working
with the MNIST data set, we went from ≈ 92% prediction accuracy on test data up
to more than ≈ 99.2%. This is quite close to the world record of 99.77%! See the
full “leaderboard” on http://yann.lecun.com/exdb/mnist/.

The MNIST data set is a fairly small data set in a deep learning context. In this
final lab exercise, we will use a network that has been trained on 1.2 million images
provided by ImageNet9 used in the Large Scale Visual Recognition Challenge 2012-
2014, see Figure 5 for a few training data examples. Each image is labeled (by
hand!) with presence or absence of one of 1000 object categories10. Simonyan and
Zisserman (2014) provided the winning contribution of the 2014 competition called
VGG16. See Table 2 for a comparison between the model used previously in this
lab trained on MNIST, and the VGG16 model trained on the ImageNet data.

Figure 5: 100 images from ImageNet

Table 2: Comparison between the MNIST classification problem in the lab with the VGG16
network trained on ImageNet.

This lab VGG16

Data set MNIST ImageNet (only a subset)
Training data size 60 000 1 200 000
Test data size 10 000 150 000
Nr of pixels 28 × 28 = 784 224 × 224 = 50 176
Nr of image channels (colors) 1 (only gray-scale) 3 (RGB images)
Nr of class labels 10 1 000
Nr of layers 5 16
Nr of parameters 122 260 138 000 000
Training time 8 min11 2-3 weeks12

To get good weights for such a network, a lot of training time and computational
9Website: http://www.image-net.org/.

10Class categories: http://image-net.org/challenges/LSVRC/2014/browse-synsets.
11With 10 000 iterations on a laptop
12On a system equipped with four NVIDIA Titan Black GPUs
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Figure 6: A few results from the VGG16 classifier trained on the ImageNet data set.

resources are required. However, when the network has been trained already, the
class of a new unseen image can be predicted fast. Here, we will predict the class
for images of our choice using the pre-trained network VGG16 presented above.

Task 4.13 Open VGG16_classification.ipynb. Look at the code (you
don’t have to understand the details). Note that the code will load pre-trained
weights instead of training them on a training data set. Run the notebook and study
the output. ◦
Task 4.14 Analyze some images by changing the line where the image is loaded.
How well does the model perform on your choice of images? Figure 6 displays
some results that we got. ◦
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