
Workout — FEM

Non-mandatory exercises

2. You are going to solve the PDE{
∆u(x, y) = 0, (x, y) ∈ Ω,
u(x, y) = g(x, y), (x, y) ∈ ∂Ω,

for two different domains Ω. In each case, you can choose between using the finite
difference method and the finite element method. Make your choice and motivate
it by pointing out the advantages or disadvantages of the respective methods.

(a) Ω is the unit square.

If the square is discretized with an orthogonal grid, both methods will pro-
duce linear systems of equations of equal size that can be solved direct-
ly or iteratively. Both methods also have the same accuracy. For FDM,
using the second derivative approximation from earlier in the course, we get

τ(x, y) = O
(

(∆x)
2

+ (∆y)
2
)

. According to Theorem 6 in Section 3.4.5 of

the FEM compendium, the error of the FEM solution is O
(
h2
)
, where h is

the step size in both directions. However, FDM requires less operations to
construct the coefficient matrix, making it the better choice in this case.

Depending on the PDE, it may be wise to use FEM with an anisotropic mesh.
In this way, it is possible to capture for example oscillations with a period
that is a multiple of the step size. This will, however, add some non-zero
entries to the coefficient matrix compared to a right-angled grid. It will also
decrease the accuracy of the solution for a given h.

(b) Ω has the shape of a gear wheel (kugghjul).

FEM is the best alternative in this case, as the geometry is quite complex.
While FDM is based on an orthogonal grid and would be much more compli-
cated if extended to the more general case, the complexity of FEM doesn’t
increase much for irregular grids and domains. Moreover, the size and shape
of the finite elements can be adapted to the shape of the domain, so that
a good approximation can be obtained using a mesh that is coarse in easy
parts of the domain and finer in the more difficult areas. On average, the mesh
may then be fairly coarse, yielding a relatively small system of equations. To
reach a comparable accuracy with FDM, a very fine mesh is needed, adding
computational complexity to the problem.

3. Consider the boundary value problem in exercise ??. If a = a(x) is a function of
x, what effects does that have on the computations?

Every Ki,j needs to be computed individually, which adds a lot more computatio-
nal complexity (or rather removes several possibilities for optimization) and the
problem will be heavier to solve.

4. The stationary heat equation for a metal rod with one end at a fixed temperature,
a constant heat flux at the other end, and a heat source function f(x) is given by −u

′′(x) = f(x), 0 < x < 1,
u(0) = 0,
u′(1) = 1.
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(a) Derive the weak formulation of the problem. The space

V 0 = {v(x) | v(0) = 0, v is piecewise continuously
differentiable on 0 ≤ x ≤ 1}

,

can be used both for the weak solution u(x) and for the test functions v(x).

Multiply with a test function:

−u′′v = fv

Integrate:

−
1∫

0

u′′vdx =

1∫
0

u′v′dx− [u′v]
1
0 =

1∫
0

u′v′dx+ v(1) =

1∫
0

fvdx

⇒
1∫

0

u′v′dx =

1∫
0

fvdx− v(1)

That is, find u ∈ V 0 such that

1∫
0

u′v′dx =

1∫
0

fvdx− v(1) ∀v ∈ V 0.

(b) Introduce a uniform grid xj = jh, j = 0, . . . , n, where h = 1/n. Discretize
the weak form of the PDE using the space

V 0
h = {v(x) ∈ V 0 | v(x) is linear on [xj , xj+1], j = 0, . . . , n− 1},

and derive the finite element method using linear hat functions as your basis
functions. Give your final result as a linear system of equations, where the
matrix elements are given explicitly, but the right hand side may contain
integrals with the function f(x).
Hint: Make a figure of your hat functions in order to get all the integrals
right.

The finite element method reads: Find uh ∈ V 0
h such that

1∫
0

u′hv
′dx =

1∫
0

fvdx− v(1) ∀v ∈ V 0
h

To derive the corresponding system of equations, insert the approximated
solution uh =

∑n
i=1 ciφi, where φi = φi(x) are linear hat functions, into the

integrals:

1∫
0

u′hv
′dx =

1∫
0

n∑
i=1

ciφ
′
iv
′dx =

n∑
i=1

ci

1∫
0

φ′iv
′dx =

1∫
0

fvdx− v(1)

Note that the upper limit of the sum is now n, and not n − 1 as before, as
we have a Neumann condition at x = 1. Use φj , j = 0, . . . , n − 1, as test
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functions and use the fact that every φj is 0 for all x not in [xj , xj+1]:

n∑
i=1

ci

1∫
0

φ′iφ
′
jdx =

j+1∑
i=j−1

ci

1∫
0

φ′iφ
′
jdx

= cj−1

xj∫
xj−1

φ′j−1φ
′
jdx+ cj

xj+1∫
xj−1

φ′
2
jdx+ cj+1

xj+1∫
xj

φ′j+1φ
′
jdx

=

1∫
0

fφjdx− φj(1)

The function φj :

φj =


x−xj−1

h for x ∈ [xj−1, xj)
xj+1−x

h for x ∈ [xj , xj+1)

0 elsewhere

Inserting this into the integrals, and using the fact that xj − xj−1 = h for all
j, we get:

cj−1

xj∫
xj−1

(
− 1

h2

)
dx+ cj

xj+1∫
xj−1

1

h2
dx+ cj+1

xj+1∫
xj

(
− 1

h2

)
dx

= − 1

h
cj−1 +

2

h
cj −

1

h
cj+1

=
1

h

xj∫
xj−1

(x− xj−1)fdx+
1

h

xj+1∫
xj

(xj+1 − x)fdx− φj(1)

Remember, φj(1) is non-zero only for j = n, where φn(1) = φn(xn) = 1. The
resulting system of equations can be written as:



2
h − 1

h 0 . . . 0

− 1
h

...

0
. . . 0

... 2
h − 1

h
0 . . . 0 − 1

h
1
h




c1

...

cn

 =



x2∫
x0

fφ1dx

...
xn∫

xn−2

fφn−1dx

xn∫
xn−1

fφndx− 1


The last row is special, as the integration interval doesn’t include xn+1.
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