

Protein Characterization in Drug Development

Jimmy Ytterberg, Ph.D. UDOPP/ADMEoT, DDD-P, SciLifeLab 21/09/02

Personal Background

3 years in **Biopharma**: Swedish Orphan Biovitrum, SOBI (2017-2020) -A **biopharmaceutical** company focused on rare diseases -Department of Biopharmaceutical **Research** and **Development** (BRD) -Section of **Protein Characterization** (mass spectrometry)

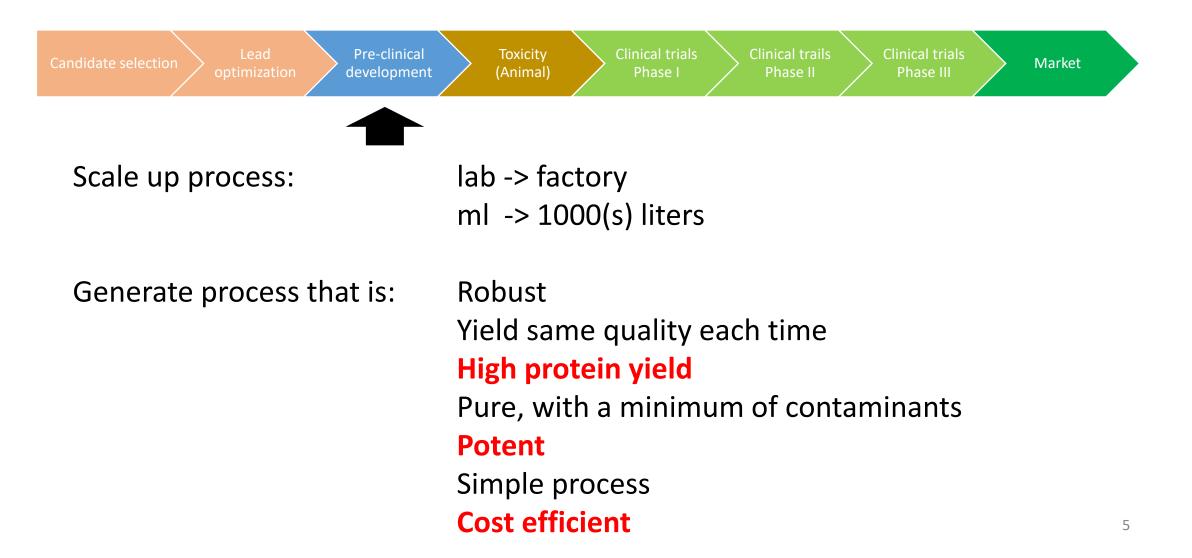
Currently at **facility** focused on ADME of therapeutics at Uppsala university -**ADMEoT**, Drug Discovery and Development platform (**DDD-P**), **SciLifeLab** -Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (**UDOPP**) -Focused on **mass spectrometry of therapeutic proteins**

UDDOPP UPPSALA UNIVERSITY

Drug Optimization & Pharmaceutical Profiling

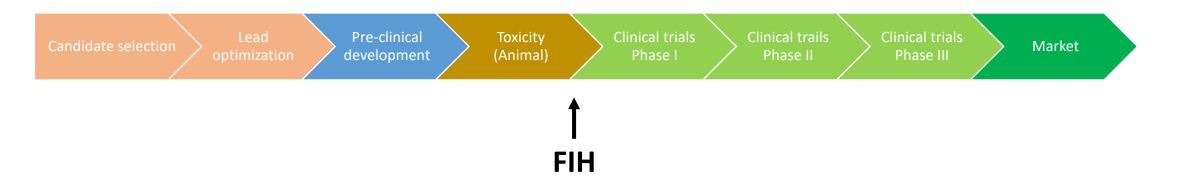
Candidate Drug to Clinical Trials

- Going from having a **candidate drug** in the lab to supplying material for a clinical trial requires the development of a process for **large scale manufacturing**
- The process is tightly regulated by the regulatory agencies in the different countries
 - USA: Food and Drug Administration (FDA)
 - EU: European Medicines Agency (EMA)
- The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH)
 - Harmonize the requirements
 - Detailed **guidelines** for each step of the drug development


Definitions

- Drug substance
 - Active pharmaceutical ingredient
 - End product from the purification process
 - Raw material for drug product
- Drug product
 - One or more drug substance
 - Excipients/additives
 - Raw material for the finished product
- Finished product
 - The sold product

Process Development



Process Development

The **process** should largely be **finished** by "**first in human**" (FIH), since the final product need to have the **same characteristics** as was used in toxicity and clinical trials.

If production is increased (e.g. 1000 L batches -> 2000 L batches), the company needs to show that the product is not affected.

Process Development

- Four functions:
 - Upstream
 - Downstream
 - Analysis
 - Formulation

Upstream Process Development

- Develop bioreactor process
 - Scalable
 - Robust
 - Consistent product at variable scales
 - Suitable for GMP manufacturing
 - Not too complex
- High productivity, with low levels of impurities
- Maintain quality and function of the protein

- Expression systems:
 - Bacteria
 - Yeast
 - Mammalian cells

Upstream Process Development

- Compare cell lines and clones
- Optimize growing conditions (e.g. media, temperature, pH)
- Optimize harvesting conditions
- Harvest
 - Clarification
 - Removal of cells and debris
 - Filtering

Aim of the Purification Process (Downstream)

- Remove impurities
 - Host cell protein (ppm)
 - Host cell DNA (ppb)
 - Product aggregation

ppm = parts per million ppb = parts per billion

- Remove contaminants
 - Bioburden (amount of viable microorganisms)
 - Endotoxins
 - Virus
- Maintain product function and yield

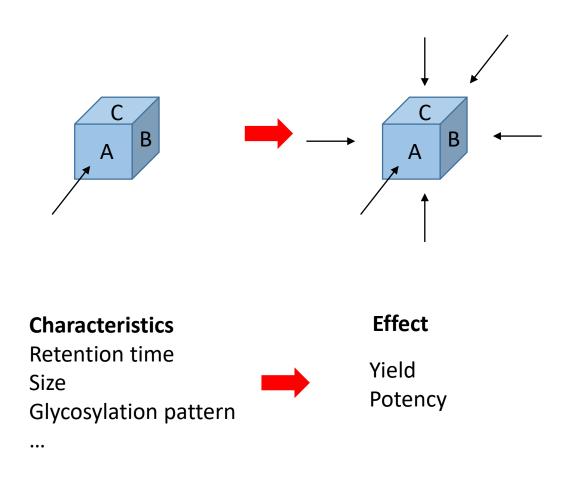
Downstream Process Development

Purification

- 1) Reduce volumes and impurities
- 2) Ion exchange chromatography step(s)-To reduce impurities to target levels
- 3) Final concentration and buffer exchange

Virus reduction steps

-Introduced from cell line, raw material, or operator -inactivation and filtering


Protein Characterization is Needed at All Stages

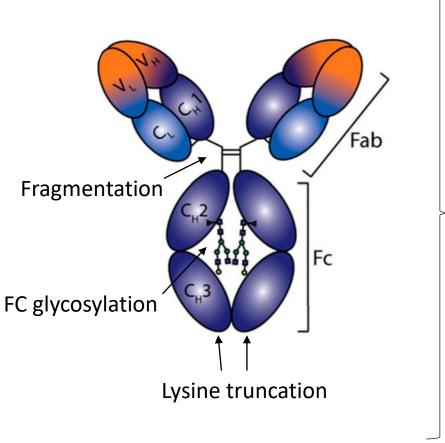
- At each stage of the purification, and through out the process development the product is characterized using a variety of methods
- Aim: Defining and Monitoring Quality Attributes
 - Characteristics that can be detected and quantified
 - Correlation to stability, potency, etc.
- The optimization of the process development is evaluated using these quality attributes

Finding the "Right" Characteristic to Assay

- To know what is on each side of a cube, it is not enough to check one side, all sides need to be checked.
- Similarly, it is not enough to analyze a therapeutic protein with only one method. Many methods need to be used to characterize the protein before understanding which characteristic(s) is/are most important.

Protein Characterization of Product

Quality Attributes for mAb


Amino acid modifications

- Deamidation
- Oxidation
- Lysine truncation
- Disulfide shuffling
- FC glycosylation

Structural abnormalities

- Aggregation
- Misfolding
- Fragmentation

Monoclonal antibody

Possible correlation to activity, stability and/or immunogenicity

Methods Used for the Characterization

Quantification

UV spectrophotometry (A280 nm)

-Amount

Purity

- Gel electrophoresis (1D SDS PAGE):
- Size exclusion chromatography:
- Reverse phase chromatography:
- Isoelectric focusing/Ion exchange chromatography:

Physical properties

- Dynamic light scattering:
- Differential scanning fluorimetry (DSF)

-Molecular weight, sample complexity
-Complex size: monomer, dimer, trimer, etc.
-Hydrophobic interactions:
pre-peak(s), main peak, post-peak(s)

-Charge based heterogeneity

-Aggregation

-Melting temperature/structural stability

Impurities

 Cell related Host cell DNA: Host cell proteins: 	qPCR ELISA, LC-MS	
 Process related (mAb) Residual protein A: Insulin: 	ELISA ELISA	Can cause response in patient!
 Contaminants Bioburdan*: Endotoxin: 	TAMC/TYMC LAL assay	

16

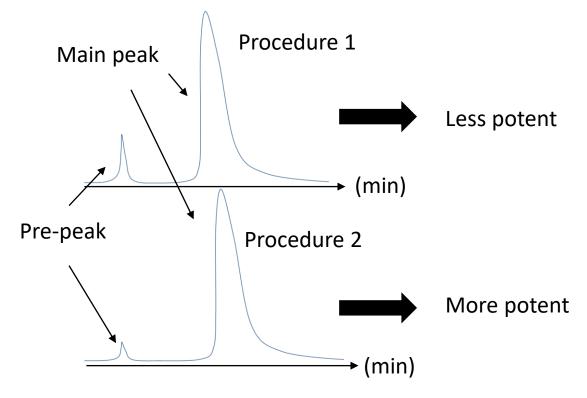
Potency Assays

- Crucial to be able to assay mechanism of action
- Often cell based
- Exact type will depend on the mechanism of action of the protein
- Examples of assays mAb:
 - Antibody-dependent cell mediated cytotoxicity
 - Complement dependent cytotoxicity
 - Apoptosis
 - Binding to target on cells
 - Binding to target binding or blocking soluble target

Mass Spectrometry Based methods

- Protein mass
- Peptide mapping:
 - Sequence coverage
 - Post-translation modifications (PTMs)
 - Glycopeptides
 - Terminal sequence analysis
 - Non-reduced peptide mapping for disulfide bridge mapping
- N-linked oligonucleotide analysis

-Global carbohydrate profile



Hypothetical Example One: Loss of Activity Due to Pre-Peaks in RPC

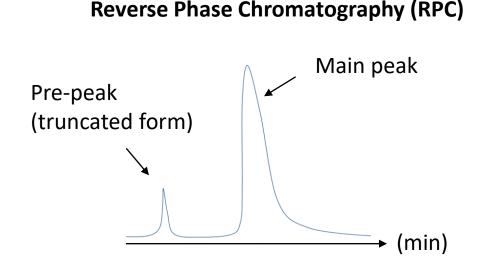
Reverse Phase Chromatography (RPC)

Observation

More pre-peak yield lower potency (e.g. inactive form of protein)

Solution

Only collect fractions with main peak (increase purity, but lower yield)


Step to optimize: Downstream/Purification

Hypothetical Example Two: Loss of Activity Due to Truncation

Observation

A truncated form of the protein is generated during the purification process -> reduced yield + impurity that needs to be removed

Solution

1) Change the amino acid sequence to remove the vulnerable site for cleavage or

2) Change the cell line to one without the responsible protease

Step to optimize: Upstream/clone or cell line

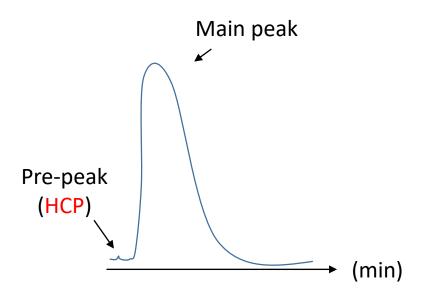
Hypothetical Example Three: Increase Activity by Modifying the Carbohydrate Profile (19)

Observation

The half life can be extended by modifying the carbohydrate profile

(knowledge from experimentation or literature)

Solution


Change the media composition

Step to optimize: Upstream/Growing conditions

Hypothetical Example Four: Presence of Host Cell Proteins (HCP)

Reverse Phase Chromatography

Observation

The product contain a minor component of HCP which is difficult to remove completely:

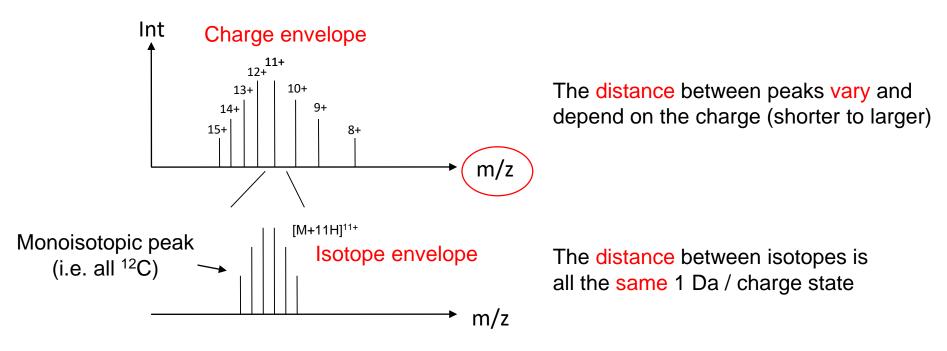
e.g. Annexin A2 during mAb purification -> Risk for immunogenicity

Solution

Generate (or buy) deletion/knock-down version of the expression system

Step to optimize: Upstream/expression system

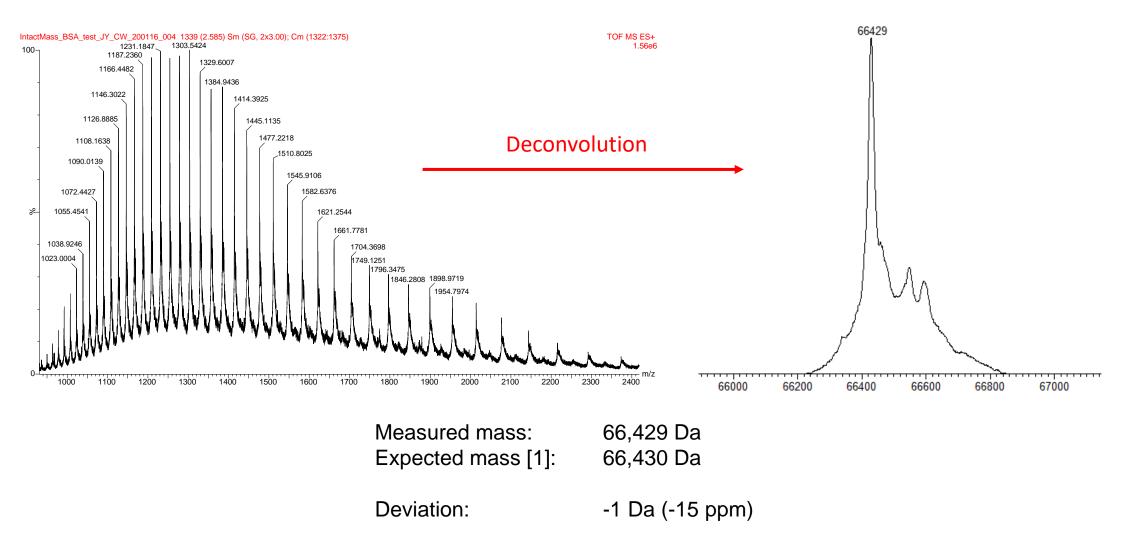
Mass Spectrometry Based Methods


23

Mass Spectrometry – Intact Mass

- Mass spectrometry (MS) measures charged particles mass divided by charge (m/z)
- Proteins are large and can accept many charges (protons) during ionization
 => Charge envelope

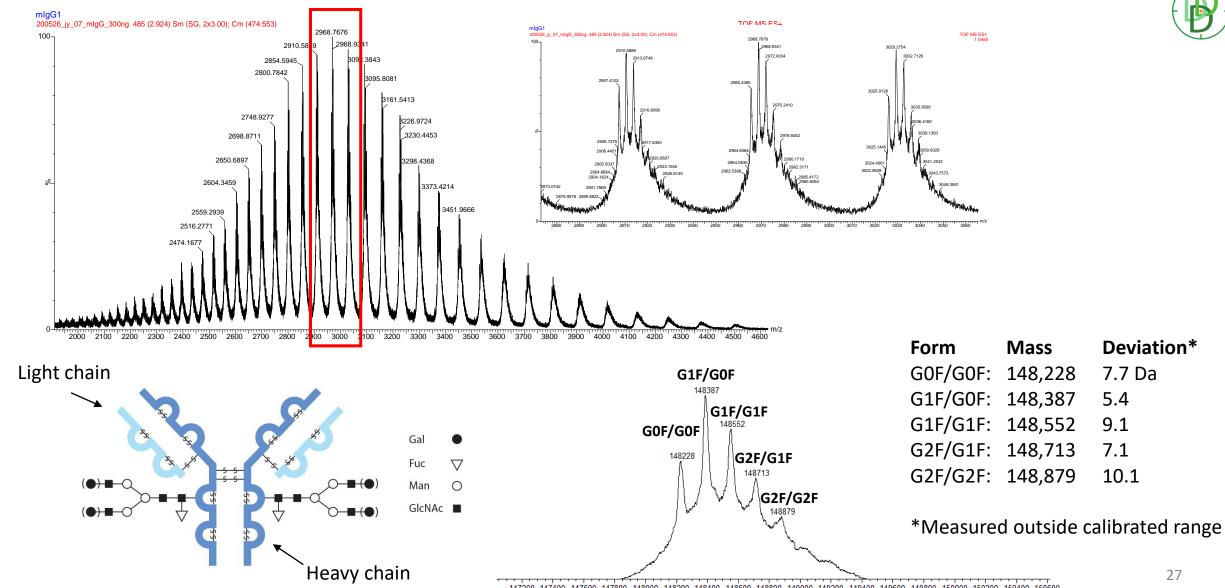
The charge of each peak in the charge envelop can be determined by:


Neutral mass

- 1) The distance between isotopes
- 2) The distance between charge states

MS of Intact BSA

[1] Hirayama et al., Biochem. & Biophys. Res. Comm., 1990, 639-646



MS of Myoglobin, 17kDa protein

MS of Intact mouse IgG1

27

Deviation*

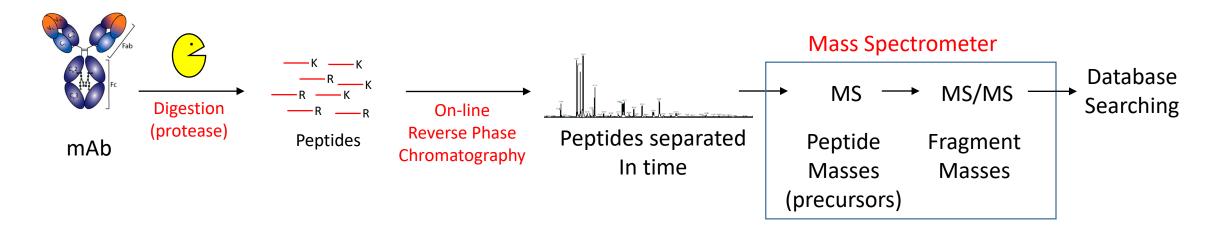
7.7 Da

5.4

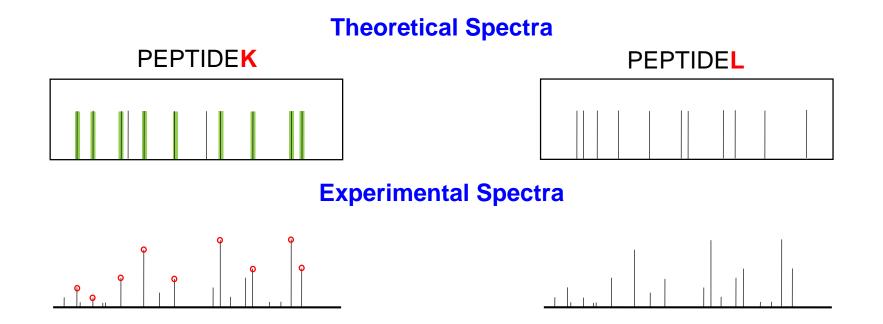
9.1

7.1

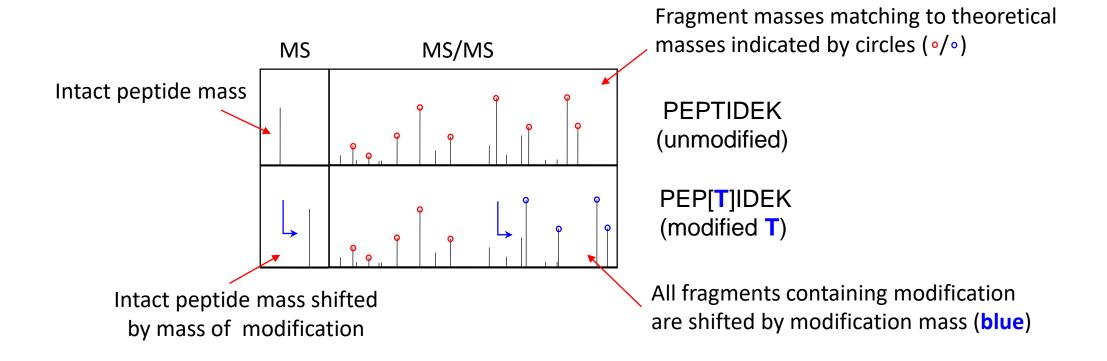
10.1


147200 147400 147600 147600 148000 148200 148400 148600 148800 149000 149200 149400 149600 149800 150000 150200 150400 150600 Mass

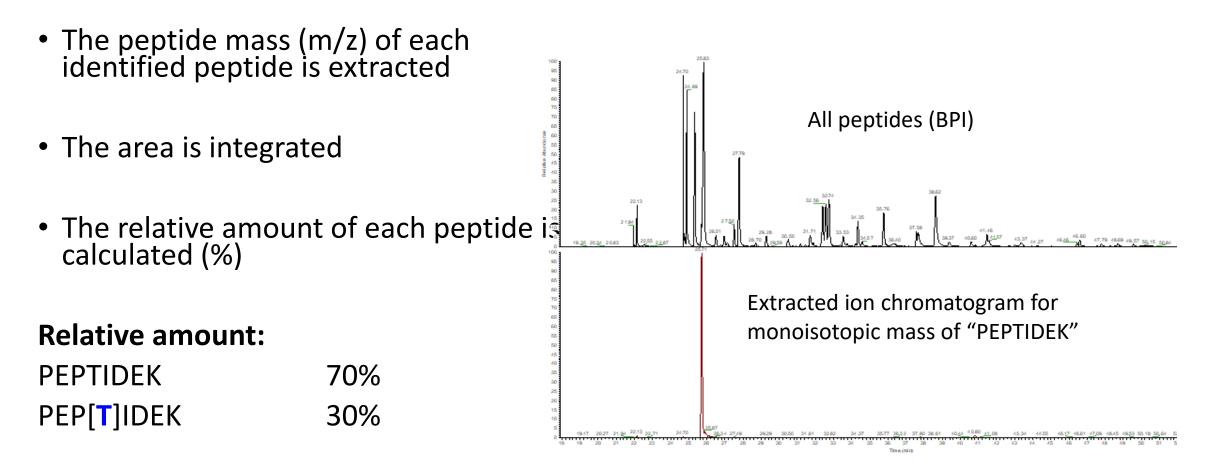
Peptide Mapping Using LC-MS: 1) Peptide Identification


Peptide identification

- Proteins are digested by proteases (trypsin) to generate peptides
- The peptides are separated using on-line reverse phase chromatography
- The precursor mass is determined in MS
- The fragment masses are determined in MS/MS
- The peptide sequence is determined by database searching

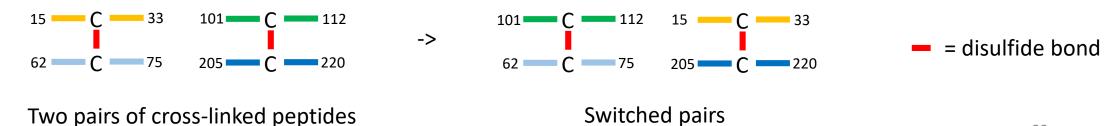

Peptide Mapping Using LC-MS: 2) Peptide Identification

During the database search, each **MS/MS spectrum** together with the **precursor** (peptide) mass is **compared** to **theoretical spectra** and ranked according to number of matched fragments. Best rank = **peptide ID** (sequence)


Peptide Mapping Using LC-MS: 3) Identification of Modified Peptides

Modified peptides are identified in the same way as unmodified peptides, with the exception of allowing for the modification mass

Peptide Mapping Using LC-MS:4) Quantification of Identified Peptides


X = amino acid

Peptide Mapping

- **Sequence coverage** = identified sequence compared to whole sequence (%)
- Modifications
 - Relative amount (% of total peptide) per site
 - Oxidation:XXXMXXXK->XXXM°×XXXK (+16 Da)• Deamidation:XXXNXXXK->XXXDXXXK (+1 Da)
 - XXXQXXXK -> XXXEXXXK (+1 Da)

• Disulfide shuffling

• Peptides cross-linked by disulfide bonds are identified in a similar way as unmodified peptides

33

Formulation

 Purpose: To find the best possible buffer to stabilize the purified product during further processing, filling, distribution, storage and administration

Buffers:

- Detergents
- Excipients/Additives
- pH, ion concentration
- Buffer type (e.g. phosphate)

To prevent:

- Aggregation
- Fragmentation/truncation
- Modifications
- Compatibility problems

Formulation - Stability testing

- Establish shelf life
 - Can only be based on real data
 - Year 1: every 3 months; Year 2: every 6 months; Year 3+: annually
- Establish adequate storage conditions
 - Liquid (5, 25, 40°C), frozen, dried
- Determine container system suitability
 - Does the protein interact with the container?
- Dose and safety
 - Chemical degradation of drug product
 - -> reduce the concentration of active substance
 - -> can lead to formation of toxic products

Forced Degradation Studies (FDS)

- FDS is one of the key stages
 - Identification of degradation pathways and stability indicating methods
 - Try multiple stress conditions to determine appropriate stress for the specific product
 - Stressing to 10-15% instability
 - Correlate instability to potency
 - Define relevant method set, before evaluating large number of formulations
- Container and closure
 - Same as in the commercial product
 - Interaction with container and/or closure may occur

Summary

- Pre-clinical drug developement involves of upstream, downstream, analysis, and formulation
- Protein characterization is needed at all steps to ensure quality
- Optimized formulation is needed for optimal stability
- Shelf life and storage conditions are determined through stability testing
- FDS is an important way to find out what atributes need to be measured, and what methods to use.