
This article was downloaded by: [130.238.175.108] On: 06 April 2017, At: 01:45
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Organization Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Minding the Gaps: Understanding Technology
Interdependence and Coordination in Knowledge Work
Diane E. Bailey, Paul M. Leonardi, Jan Chong,

To cite this article:
Diane E. Bailey, Paul M. Leonardi, Jan Chong, (2010) Minding the Gaps: Understanding Technology Interdependence and
Coordination in Knowledge Work. Organization Science 21(3):713-730. http://dx.doi.org/10.1287/orsc.1090.0473

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2010, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

OrganizationScience
Vol. 21, No. 3, May–June 2010, pp. 713–730

issn 1047-7039 �eissn 1526-5455 �10 �2103 �0713

informs ®

doi 10.1287/orsc.1090.0473
©2010 INFORMS

Minding the Gaps: Understanding Technology

Interdependence and Coordination in Knowledge Work

Diane E. Bailey
School of Information, University of Texas at Austin, Austin, Texas 78701,

diane.bailey@ischool.utexas.edu

Paul M. Leonardi
Department of Communication Studies, Department of Industrial Engineering and Management Sciences,

Northwestern University, Evanston, Illinois 60208, leonardi@northwestern.edu

Jan Chong
Center for Work, Technology and Organization, Department of Management Science and Engineering,

Stanford University, Stanford, California 94305, jchong@cs.stanford.edu

In this paper, we broaden the concept of interdependence beyond its focus on task to include technology, defining

technology interdependence as technologies’ interaction with and dependence on one another in the course of carrying

out work. With technologies increasingly aiding knowledge work, understanding technology interdependence may be as

important as understanding task interdependence for theories of organizing, but the literature has yet to develop ways of

thinking about technology interdependence or its impact on the social dynamics of work. We define a technology gap as

the space in a workflow between two technologies wherein the output of the first technology is meant to be the input to

the second one. Using data from an inductive study of two engineering occupations (hardware engineering and structural

engineering), we analyzed engineers’ gap encounters (episodes in which a technology gap appeared in the course of action)

and found striking differences in how engineers minded the gaps. Hardware engineers minded the gaps by coordinating

technologies via “bridges” that automated data transfers between technologies. Structural engineers, in contrast, allowed

technology gaps to persist even though traversing gaps consumed significant time and effort. Our findings highlight a

difference between task and technology in the degree of coordination necessary for success. Managers in our study designed

policies around technology interdependence and coordination not to manage technology most efficiently, but to manage

work and workers in a manner consistent with occupational structures and industry constraints. We discuss the implications

of our findings for theories of organizing work.

Key words : interdependence; technology; coordination; knowledge work; engineering

History : Published online in Articles in Advance September 25, 2009.

Introduction
Interdependence has long been central to theories of how

to organize work. Researchers have typically conceptu-

alized interdependence as the extent to which an orga-

nization’s tasks require its members to work with one

another (Mohr 1971, Thompson 1967) and have focused

on people’s actions in relation to others (Bachrach et al.

2006, Shea and Guzzo 1987, Van der Vegt and Janssen

2003). Along these lines, Guzzo and Shea (1992, p. 296)

defined task interdependence as the extent to which

“group members must interact and depend on each other

in order for the group to accomplish its work.” A pri-

mary mechanism for managing task interdependence is

coordination (Rico et al. 2008, Wageman 1995), explic-

itly via planning and communication (e.g., Faraj and

Sproull 2000) or implicitly via anticipation of others’

needs (e.g., Espinosa et al. 2004). These studies indi-

cate that both planned and emergent structures coordi-

nate the efforts of people who work interdependently

on tasks and that effective coordination efforts often

lead to important performance outcomes in organiza-

tions. Beyond performance, research has highlighted the

effect of task interdependence on behaviors and attitudes

that arise when coordinating work such as cooperation,

learning, citizenship, helping, motivation, and satisfac-

tion (Spriggs et al. 2000, Van der Vegt et al. 2003,

Wageman 1995, Wageman and Baker 1997).

The focus in the organizations literature on coordina-

tion among people as they work interdependently has

left considerations of interdependence among technolo-
gies engaged in the task largely by the wayside. To

find discussions of interdependence among technologies,

one must turn to research on production and opera-

tions management. This literature has recognized that,

with the introduction of automated processes and com-

puterized technologies such as numerically controlled

machine tools and robotic welders, many tasks in man-

ufacturing systems are today performed by machine.

Consequently, interdependence among people has come

to be complemented by, if not wholly replaced by,

713

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
714 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

interdependence among technologies. This interdepen-

dence among technologies affects production outcomes

so strongly that assuring that the output from one tech-

nology can be effortlessly used as input for the next

one is now essential in countless manufacturing set-

tings (Gray et al. 1993). Production researchers pay

considerable attention to problems posed by technol-

ogy interdependence (e.g., Carrillo and Gaimon 2000,

Naveh and Erez 2004, Zantek et al. 2002) and advo-

cate solutions that call for more coordination among

technologies, such as multifunctional equipment and

machines that can accept diverse inputs (Ecker and

Gupta 2005, Sinreich and Nelkenbaum 2006). Overall,

this research suggests that efficiency gains in manufac-

turing are increasingly achieved by successfully manag-

ing interdependence among technologies.

Technology’s growing role in accomplishing work is

by no means limited to production environments. In

today’s “knowledge economy,” computer and informa-

tion technologies are transforming service and white-

collar “knowledge work.” For example, travelers can

now book reservations online in the absence of a travel

agent, accessing through one portal the sites of air-

lines, hotels, and car rental companies (Campbell-Kelly

2003). Similarly, automatic teller machines have taken

on a broad set of tasks that were once performed exclu-

sively by bank tellers (Morisi 1996). Overall, computer

and information systems have automated many tasks in

clerical work (Zuboff 1988), and computer computa-

tion, simulation, and analysis tools increasingly aid engi-

neers, doctors, architects, financial analysts, and other

professionals in their everyday work (Boland et al. 2007,

Staum 2001, Streufert et al. 2001).

As more and more technologies are introduced into

service and knowledge work, interdependence among

them is likely to spring up: The closer one technology

lies to another along the path of work actions, the more

likely interdependence will arise in the form of interface

formats, information requirements, and the like. We refer

to such interdependence as technology interdependence.
In a manner parallel to task interdependence, we define

technology interdependence as technologies’ interaction

with and dependence on one another in the course of

carrying out work. As workplace technologies become

more prevalent in service and knowledge work, under-

standing technology interdependence may be as impor-

tant for theories of organizing as understanding task

interdependencies. Not only may technology interdepen-

dence strongly affect performance outcomes in service

and knowledge work just as it has in production work, it

may also alter existing task interdependence—and asso-

ciated behavioral and attitudinal outcomes—as workers’

roles and tasks change. However, organizational scholars

have yet to develop ways of thinking about technology

interdependence or its impact on the social dynamics of

work.

To begin this development, this paper inductively

explores technology interdependence in knowledge

work. In the course of this exploration, we address three

questions based on our grounded study of technology

use among engineers across two occupations and four

firms. Given the lack of prior research in this area,

the first question asks, what does technology interde-
pendence “look like” in knowledge work? In essence,

it asks how scholars can conceptualize, measure, and

analyze technology interdependence. Researchers typ-

ically measure task interdependence by asking work-

ers to rate on Likert-type scales statements such as “I

have to work closely with my team members to do my

work properly” (Van der Vegt and Van de Vliert 2005,

p. 78). Because technologies cannot answer such ques-

tions without tracking mechanisms, we require a differ-

ent approach. We begin by tracing how technologies that

the engineers use feed into one another. Specifically, we

document whether and how the output of one technology

was used as the input for the next. We develop the con-

cept of a technology gap to describe the “space” between

two interdependent technologies: a technology gap sig-

nals a transfer of work product from one technology on

which an operation has been completed to another on

which the next operation is to be carried out.

We identify in our field notes 310 gap encounters,
or episodes in which an engineer, in the course of his

work, came to the edge of a technology gap that he

had to traverse. By examining the direction of work-

flow across the gap (forward or backward), we find

that technologies in both occupations exhibited, to use

Thompson’s (1967) terms, considerable sequential and
some reciprocal interdependence. We categorize gaps by

their “width,” a measure of how difficult traversal of

the gap was for the engineer, to reveal differences by

occupation in the distribution of wide and narrow gaps

in the forward and backward directions. By examining

how many substitutable technologies were available to

the engineers for the completion of any task, we can

speak to the prevalence of pooled technology interde-

pendence as well. We also show that interdependence

among technologies in both settings was largely dis-

tinct from task interdependence among people. We find

that although both occupations exhibited what we would

call high technology interdependence, differences in how

that interdependence was manifested across occupations

suggest that the experience of technology interdepen-

dence might vary considerably.

We explore this possibility in our second question:

How do knowledge workers experience and deal with
technology interdependence? In particular, we focus

on how engineers minded technology gaps, ultimately

developing a typology of gap-traversal strategies used

by the engineers we studied. These strategies included

navigating, bridging, crossing, expanding, bypassing,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
Organization Science 21(3), pp. 713–730, © 2010 INFORMS 715

and standing still at gaps. We find that one occupa-

tion actively and purposefully narrowed gaps by creating

“bridges” that linked technologies. Bridges largely auto-

mated the transfer of data from one technology to the

next and, by their permanence, made future traversals

easier and speedier for all engineers in the firm. In this

manner, bridges alleviated many of the problems associ-

ated with technology interdependence. The other occu-

pation, in contrast, minded gaps by intentionally creat-

ing few bridges across them. The absence of bridges

forced engineers in this occupation to arduously navigate

gaps that remained wide for one and all. In this occu-

pation, the problems associated with technology inter-

dependence in the everyday carrying out of tasks rarely

waned.

In sum, work in the first occupation reflected a high

level of coordination among technologies, whereas work

in the second occupation reflected a low level of coor-

dination among technologies. This finding is striking

because coordination has always been tightly tied to the

concept of task interdependence. Some scholars mea-

sure task interdependence by asking questions about

coordination (e.g., Langfred 2007, Linden et al. 1997,

Sharma and Yetton 2003); other scholars contend that

coordination is required for successful task performance

when task interdependence is high (de Jong et al. 2007,

Rico et al. 2008, Wageman 1995). This tight coupling

between coordination and task interdependence stands

in contrast to our findings: Among the engineers we

studied, high technology interdependence was associated

with high technology coordination in only one occupa-

tion; engineers in the other occupation also faced con-

siderable technology interdependence, but intentionally

eschewed coordinating their workplace technologies in

the course of successfully performing their work.

This difference between technology interdependence

and task interdependence with respect to the degree of

coordination prompts our third question: What factors
shape the development of low versus high coordination
practices and mechanisms for handling technology inter-
dependence in knowledge work? In other words, if high

coordination is tied to high task interdependence, why

is high coordination not similarly tied to high technol-
ogy interdependence? We find that the decision to tightly

or loosely couple coordination and technology interde-

pendence was influenced by a mix of work characteris-

tics, occupational structures, and industry constraints. In

hardware engineering, factors such as high technology

costs and the ability to entrust logic testing of models

to technology rendered streamlining data transfer among

technologies a successful strategy; in this case, high

technology interdependence was tightly coupled with

coordination. In structural engineering, in contrast, lia-

bility concerns, difficulties in assessing the soundness

of models, and the desire to develop design knowl-

edge among engineers worked against such streamlin-

ing, resulting in little coordination among interdependent

technologies.

Our findings are an important contribution to the orga-

nization studies literature because they suggest that mod-

ern tasks may feature interdependence among technolo-

gies in addition to, and distinct from, interdependence

among people. Moreover, the requirements for effec-

tiveness may be different for each type of interdepen-

dence: High levels of task interdependence may call for

high coordination, but high levels of technology inter-

dependence may not necessarily do so. In our study,

managers designed policies around technology interde-

pendence not to manage technology most efficiently, but

to manage work and workers in a manner consistent with

their occupational environment.

Methods
Research Design
We investigated technology interdependence in knowl-

edge work in two occupations: structural engineers in

building design and hardware engineers in computer

chip design. Structural engineers specify the materials,

shapes, and sizes of the beams, columns, and other ele-

ments that transfer loads to the ground to prevent build-

ings from collapsing. Hardware engineers craft the logic

of microprocessor cores, buses, and other chip compo-

nents for products they bring to market. These engi-

neers write code in high-level programming languages

that specifies how components will handle instructions;

they also write programs to verify proper component

functioning.

Our data are drawn from two structural design firms

and two chip design firms in the San Francisco Bay area.

Across the four firms, we shadowed 12 structural engi-

neers and 15 hardware engineers on repeated occasions.

To maintain a focus on engineering rather than manage-

ment tasks, we targeted junior and mid-level engineers.

Between 1999 and 2001 we conducted 61 observations

of structural engineers and 65 observations of hardware

engineers.

In preliminary interviews with senior managers, we

learned that technologies aided nearly every task in

both occupations. Structural engineers created designs

via computation and equation solving on pocket calcula-

tors and via modeling in computer-aided drawing (CAD)

software packages. They used information from design

manuals, building codes, textbooks, and past project

records as they analyzed models in Excel or compu-

tational software programs. Hardware engineers wrote

code and used checking programs to verify logic and

syntax. Verified code was entered with other component

code and specification files into simulators for testing.

Simulation results could be read in text form or fed into

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
716 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

wave-form generators for interpretation. The prevalence

of technology use in the course of work tasks in both

domains indicated the likelihood of considerable tech-

nology interdependence. Other aspects of the technology

infrastructures, however, such as differences in the cost

of technologies, suggested that technology interdepen-

dence might differ substantially across the two occupa-

tions, thus providing a useful comparison.

Data Collection
Engineering work has been notoriously difficult to study

(Barley 2005, Downey et al. 1989). Engineers carry out

tasks with few everyday correlates and use sophisticated

technologies whose functioning is not easily gleaned. An

engineer may simultaneously use multiple technologies,

engage in discussion, and consult a variety of artifacts.

To meet these challenges, we interviewed a manager or

engineer in each firm so that he could outline the major

phases of design and the tasks undertaken in them. From

these descriptions, we built timelines that specified the

normal progression of design. We studied textbooks and

design manuals that explained the analyses required for

design in each discipline; doing so helped us to under-

stand the modeling and computation steps that engineers

would perform. We asked engineers (not in our sample)

to tutor us in greater detail on a set of primary work

tasks and technologies so that we would be better pre-

pared to link textbook theory to actual practice in our

observations.

We wrote detailed field notes during our observa-

tions, in which we recorded the engineer’s every action,

including his typed commands, computer program starts,

switches and stops, and use of artifacts. We asked for

screenshots when engineers worked on the computer,

made photocopies of physical documents they used (e.g.,

book pages), and sketched other artifacts that could not

be captured by computer or copier (e.g., drafting tools).

We audiotaped conversations whenever engineers spoke

too quickly or too technically for us to keep pace by

hand. We later entered transcriptions of the tapes into the

text of the notes at the point they occurred. Collecting so

many types of data enabled us to prepare field notes that

describe actions, conversations, and visual images simul-

taneously and thus produce a record not only of what

engineers did and said, but also of what they worked on

and created. We wrote appendices for each day’s field

notes that describe the artifacts we collected, including

how and why the engineer used the artifact. We began

expanding our field notes immediately after each obser-

vation; completing a full narrative of each three to four-

hour observation session took between two and two and

a half days.

The intensity of our techniques for collecting and

recording data prompted us to study the four firms

sequentially so that the research could remain manage-

able. Thus, we began and completed the research on

structural engineering before moving to hardware engi-

neering. Three graduate students assisted with the field-

work in structural engineering and two others assisted

with the research on hardware engineering. The first

author did fieldwork in all four sites and completed 50%

of the observations in both occupations to ensure that we

would retain a deep understanding of each site when the

students graduated. Consistency and coordination were

especially important in a project spanning multiple years

and sites. The first author trained all team members who

did fieldwork and reviewed every set of notes that they

produced for thoroughness, technical accuracy, and con-

formity to formats.

Data Analysis
The first task of data analysis was to conceptualize

technology interdependence in a manner that would

allow us to identify and isolate incidents in the field

notes in which interdependence was evident. We adopted

the recommendation of Glaser (1978) to develop ana-

lytic constructs, grounded in our rich observational

data, that would aid us in systematic analysis. Fol-

lowing Glaser’s practice of “theoretical sensitivity,” and

recognizing from our fieldwork that technology interde-

pendence is often manifested at the intersection of tech-

nologies, we first developed the concept of technology
gap. We defined a technology gap as the space in a

workflow between one technology and a second tech-

nology wherein the output of the first technology was

meant to be the input to the second one. An example of a

technology gap existed in structural engineering between

CAD software (for drawing solutions) and analysis soft-

ware (for testing solutions). Transferring the CAD model

from the CAD software to the analysis software required

human effort; no single command ran first one applica-

tion and then the other.

In identifying technology gaps, we counted as technol-

ogy any artifact that an engineer used in the course of his

work that provided output or allowed input. Thus, books

and manuals were included because their content often

was the output that engineers entered into other tech-

nologies; most software programs were also included.

Work implements not counted included pencils, erasers,

straight edges, and other implements that had less dis-

cernible input or output. Also not counted were func-

tions within technologies, such as a spell-checking func-

tion in a word processor.1

We next defined a gap encounter as an episode in

which a technology gap appeared in the course of action.

That is to say, a gap encounter occurred when an engi-

neer sought to transfer the output of one technology

so that it might serve as the input for a second one.

Gap encounters often appeared when engineers switched

from one technology to another and in doing so car-

ried forward some piece of work from the first tech-

nology for further manipulation by the second one.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
Organization Science 21(3), pp. 713–730, © 2010 INFORMS 717

The important aspect of gap encounters was the trans-

fer of output to input: the focus was on the path of

work across technologies and hence technology inter-

dependence, not between people and hence task inter-

dependence. Thus, gap encounters could have involved

multiple individuals; in our observations, however, most

gap encounters featured a single individual who operated

both technologies.

Detecting engineers’ encounters with gaps was

straightforward in observations of structural engineers,

whose work was often done with paper, pencil, and

a calculator. A structural engineer launching a software

application, for example, entailed an obvious turn in

posture toward the keyboard; similarly, using a design

manual required reaching for it on a bookshelf. In hard-

ware engineering, almost all work was completed on

the computer, so most technologies were launched by

command, with few distinguishable body movements to

signal switches among technologies. We therefore posi-

tioned ourselves during observations so that we could

see all keystrokes. In addition, we detected early cues of

switches whenever an engineer began to prepare her data

for output. Such preparation may have entailed such dis-

tinct steps as making selections from pull-down menus,

running an external script, or processing the data format

manually (e.g., by adjusting it row by row in a file). All

these actions served as behavioral signals that a technol-

ogy gap might soon be encountered.

We began our analysis by isolating the gap encounters

in four sets of field notes, two from each occupation.

We examined these encounters to determine which of

their attributes might best help us conceptualize tech-

nology interdependence. We made detailed lists of such

attributes, examined the lists with respect to gap encoun-

ters pulled from a broad cross section of our data, and

revised the lists to reflect those attributes that were com-

mon to all gap encounters (Strauss and Corbin 1998).

Ultimately, we identified three key attributes that would

help us distinguish among and compare encounters: the

direction of the flow of work across the gap, the size of

the gap, and the strategy the engineer undertook to deal

with the gap. Each attribute had more than one possi-

ble value; for example, we observed many strategies for

contending with gaps. We define the attributes and their

observed values in the next section.

These attributes and their values became the codes

that we used to code the gap encounters in the remain-

ing field notes. In total, we identified 127 gap encoun-

ters in 176 hours of observation in structural engineering

and 183 encounters in 178 hours of observation in hard-

ware engineering. The first author coded each of these

310 gap encounters using ATLAS.ti©. In the course of

coding, we found that some engineers traversed a given

gap many times, whereas other engineers traversed it

only once in completing the same task. One engineer,

for example, sent his code for error checking after writ-

ing each 20 lines of code, and another waited until she

had completed her entire code file. To account for these

differences in behavior, we coded a gap encounter only

once per observation if the engineer was transferring the

same object (e.g., the same model or the same piece of

code) across the same gap between the same two tech-

nologies. In other words, we opted not to inflate the

number of gap encounters caused by engineers’ varia-

tion in work practices, but to render counts that reflected

how often the task was performed.

Technology interdependence is not completely de-

scribed by the three attributes of technology gaps on

which we focused, but analyzing these attributes helped

us conceptualize and document, in particular, sequential

and reciprocal interdependence. To investigate pooled

interdependence, we examined the number of substi-

tutable technologies available to complete each task. In

addition, to enhance our understanding of technology

interdependence in all its forms, we drew heavily on our

field notes for incidents and conversations that would

help us deepen our insights, interpret our findings, and

support our conclusions.

Technology Interdependence in
Two Occupations
What Technology Interdependence “Looks Like”
Technology interdependence in the engineering work we

observed paralleled the flow of work tasks as engineers

moved forward through stages of design and analysis.

In this task progression, the output of one technology

became the input to a second technology as the engi-

neer’s product (be it a drawing, a computational model,

or code) advanced toward completion. Each transfer of

the product from one technology to the next indicated a

technology gap. For example, when a hardware engineer

finished writing his component code, he might submit it

to a simulator for testing. The serial traversal of technol-

ogy gaps in this manner spoke to the sequential interde-
pendence among technologies in both occupations.

Engineering work also flowed backward. A backward

flow was almost always generated by feedback. Back-

ward flows in the form of feedback occurred, for exam-

ple, when a testing program detected problems in a

model or a piece of code. The engineer would use this

feedback to modify the model or code in the relevant

technology he had used to create his design. Feedback

varied in its explicitness: Some testing programs merely

detected errors, others pointed out error location, and

still others diagnosed possible causes, and a rare few

suggested corrections. In each case, the feedback was

intended to serve as input to a technology with which the

engineer would modify the model or code. Because this

technology was typically the same one the engineer used

to create the model or code, the presence of technology

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
718 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

Table 1 Direction of Workflow Across Gaps by Occupation

Structural engineering Hardware engineering

N Percent N Percent

Forward 101 80 154 84

Backward 26 20 29 16

Total 127 100 183 100

gaps in the backward flow reflected reciprocal interde-
pendence among technologies in these two occupations.

Table 1 shows that in both occupations, engineers

encountered the most gaps as they progressed in a for-

ward direction along the sequentially organized flow of

engineering work. In structural engineering, 80% of all

encountered gaps arose in the forward direction; in hard-

ware engineering 84% arose in the same direction. At

20% and 16% of all gaps, respectively, backward gaps

indicated a degree of reciprocal interdependence among

technologies in both structural and hardware engineering.

Technology gaps in either direction required human

intervention for traversal. This intervention was more

strenuous for some gaps than for others. As a first step

in characterizing the difficulty associated with traversal,

we denoted the size of the gap, or the distance between

the two technologies, by categorizing gaps as being wide
or narrow. We defined wide gaps as being more diffi-

cult to traverse than narrow gaps. We assessed gap size

based on a combination of the amount of time it took the

engineer to traverse the gap and the number of distinct

steps or actions that were required. Hence, a gap was

wide when its traversal required a significant amount of

time (as much as an entire afternoon) and possibly mul-

tiple actions (e.g., manually transferring data points one

by one across several input screens). We called a gap

narrow when the output of the first technology became

the input to the second one in a very short time (as little

as a few seconds and often in under a minute), with few

related actions (often simply typing a single command).

A wide gap is illustrated in the example of Cindy,

a structural engineer who designed her steel beams in

AutoCAD software and then analyzed their deflection in

a program called RAM SBeam. Because there was no

easy mechanism for transferring data from AutoCAD to

RAM SBeam, Cindy had to enter the values manually.

The transfer was further complicated by the fact that

the AutoCAD values were in different units than RAM

SBeam would accept, as Cindy explained:

I get the dimensions from CAD [she points to the text

lines at the bottom of her screen, where numbers appear],

but RAM SBeam is in kips2 per feet and CAD is in

pounds per square foot, so I use my calculator to do

the conversion. [She picks up her pocket calculator and

enters some values and then types the result into the entry

field of the RAM SBeam window.]

Table 2 Size of Gap by Direction and Occupation

Structural Hardware

engineering engineering

N Percent N Percent

Size of gap

Wide 118 93 76 42

Narrow 9 7 107 58

Total 127 100 183 100

Forward distribution

Wide 92 91 47 31

Narrow 9 9 107 69

Total 101 100 154 100

Backward distribution

Wide 26 100 29 100

Narrow 0 0 0 0

Total 26 100 29 100

In an example of a narrow gap, Eric, a hardware engi-

neer, created a diagnostic test and was ready to run it

on a microprocessor configuration. To do so, he simply

typed a command, as described in our field notes: “At

the prompt in the lower left window, he types: make

vcs.log DIAG-103.”

Table 2 shows the distribution of wide and narrow

gaps across the two occupations. Wide gaps outstripped

narrow gaps in structural engineering by a large mar-

gin, constituting 93% of all gap encounters in this field.

In hardware engineering, the balance was tipped in the

opposite direction, with engineers encountering narrow

gaps (58%) more frequently than wide gaps (42%).

Table 2 further categorizes wide and narrow gaps in

terms of the flow of work. In structural engineering,

more than 90% of the gaps in the forward direction were

wide. In contrast, in hardware engineering, fewer than

a third of the forward gaps were wide. Compared with

structural engineers, hardware engineers switched with

ease from one technology to another in the forward pro-

gression of work. In both occupations, all gaps in the

backward direction were wide.

To complete the picture of technology interdepen-

dence in each occupation, we next considered whether

pooled interdependence existed among the technologies.

This endeavor required that we examine the degree to

which an array of substitutable technologies was avail-

able to aid with any given task. If different technologies

were available, there would be pooled interdependence.

In hardware engineering, we found that most tasks

were associated with a single technology unique to that

task. Consequently, engineers rarely had a choice among

technologies in their work. To verify code via simula-

tion, for example, engineers in one firm we studied used

a Verilog simulator made by a supplier named Synop-

sys; Cadence as well as other design and analysis tech-

nology suppliers also sold Verilog simulators, but that

firm owned only the Synopsys simulator. The same was

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
Organization Science 21(3), pp. 713–730, © 2010 INFORMS 719

Figure 1 Technology Interdependence in Hardware

Engineering

Task 1 Task 2 Task 3 Task 4

Narrow Narrow Wide

Technology A Technology B Technology DTechnology C

Wide Wide Wide

true for the tasks that fell before and after simulation,

which meant that the gap in front of and the gap behind

the simulator each had a single technology on either

side. Hardware engineers explained that the high cost

of their work technologies—as much as a million dol-

lars in some cases—was a strong deterrent to purchasing

multiple equivalent technologies to perform any given

task. Pooled technology interdependence was, therefore,

largely absent in hardware engineering.

In structural engineering, we found the opposite sit-

uation: Numerous technologies existed for most tasks

and engineers could choose which technologies to use.

For example, to determine the size of beams, the engi-

neers could use a commercial product called RISA-3D

or an Excel spreadsheet created by a colleague that

accepted input for predetermined formulas. Alterna-

tively, the engineers could look up values for material

strength in design manuals and then use their calcula-

tor to determine the beam size “from scratch” by writ-

ing down and solving a series of equations, with the

strength values as input. The structural engineers noted

that many technologies were available for each task

because each technology cost relatively little—the most

expensive technology cost $25,000—and some technolo-

gies, given to the engineers by professors back in grad-

uate school, were nearly free. Moreover, much of the

foundational knowledge that underpinned the algorithms

embedded in the technologies retained its value over

time (e.g., the physics was still valid, many of the mate-

rial properties were unchanged), which meant that old

technologies remained useful even as new technologies

entered the firm. Hence, few technologies were retired.

Thus, in structural engineering, pooled technology inter-

dependence was considerable.

We pull together our findings of flow direction, gap

width, and technology substitution in graphic represen-

tations of technology interdependence in each occupa-

tion. Figure 1 provides a simplified representation for

hardware engineering. Four technologies (A, B, C, D),

one for each of four tasks �1�2�3�4�, lie in progression,

reflecting sequential interdependence. The forward gaps

between these technologies are mostly narrow; about

one-third are wide. All the backward gaps, which indi-

cate reciprocal interdependence, are wide. Figure 2 pro-

vides a simplified representation of technology inter-

dependence in structural engineering. Like Figure 1,

Figure 2 Technology Interdependence in Structural

Engineering

Task 1 Task 4
Wide

Task 2
Wide

Task 3
Wide

Technology
B2

Technology
B1

Technology
A3

Technology
A2

Technology
A1

Technology
D2

Technology
D1

Technology
C3

Technology
C2

Technology
C1

Wide Wide Wide

Figure 2 shows four tasks in progression, but in this

case multiple technologies are available for each task:

three technologies �A1�A2�A3� for the first task, two

�B1�B2� for the second, three for the third �C1�C2�C3�,
and two for the fourth �D1�D2�. These multiple tech-

nologies for each task reflect pooled interdependence

that is missing in the hardware engineering represen-

tation. Forward and backward gaps are wide in struc-

tural engineering. The representations in Figures 1 and

2 reflect high levels of technology interdependence:

Almost all tasks in both occupations were aided by tech-

nology, and the output of one technology became the

input for another technology as the work progressed.

Task interdependence looked quite different from

technology interdependence in both occupations. In

hardware engineering, junior and mid-level hardware

engineers worked in project groups of 5–10 engi-

neers, managed by a senior engineer. Each engineer

was assigned a particular microprocessor component;

his job was to write and test the code that would

model that component. Input and output specifications

were made early to reduce sequential task interdepen-

dence among the engineers; engineers could begin work

on their component without completed code on other

components because they assumed that the output of

other engineers’ models would conform to their models’

input requirements per these specifications. Develop-

ment could not begin, however, until these specifications

were determined.

Combined, the engineers’ component models formed

the coded representation of a given version of the micro-

processor and its peripherals, which evidenced pooled

task interdependence. A separate group typically tested

the complete representation, but each hardware engi-

neer routinely built the full model when testing her own

component to make sure that it interacted properly with

other components. In these component tests, older or less

detailed versions of other component models were gen-

erally sufficient, thereby lessening sequential task inter-

dependence by removing any need to wait for another

engineer to complete his work before testing one’s own.

Failure in these tests sometimes prompted an engineer

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
720 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

to suspect that the problem lay not in her component’s

model but in someone else’s, a suspicion that could

prompt feedback to the other engineer, whose subse-

quent modification of his model would reflect reciprocal

task interdependence.

Hardware engineering thus exhibited aspects of

sequential, reciprocal, and pooled task interdependence,

but practices (such as early input/output specification)

were developed such that pooled task interdependence

primarily characterized daily work. Under this design,

hardware engineers, although specialists in the design of

particular types of components, carried out very similar

kinds of tasks and used a common set of technologies

to create and test those components.

Overall, task interdependence was distinct from tech-

nology interdependence in hardware engineering. Each

engineer individually made her way through the sequen-

tial progression of technologies as she completed the

full set of tasks on her own component. Her peers sim-

ilarly made their way through the same progression of

technologies as they completed the same set of tasks

on their components. Along this progression, each engi-

neer’s work product traversed technology gaps as it

moved from one technology to another. In traversing

these gaps, products did not simultaneously move from

one engineer to another; rather, a single engineer shep-

herded a product from the beginning to the end of the

hardware engineering design flow. As a result, each engi-

neer experienced the full set of technology gaps, and

these gaps were identical to those experienced by the

other hardware engineers in the firm. Task interdepen-

dence was primarily pooled (engineers worked sepa-

rately on components that were later combined to form

the whole product); technology interdependence was pri-

marily sequential (each engineer’s product moved from

one technology to the next as work progressed) and

experienced identically by all hardware engineers.

A similar situation existed in structural engineering.

Working in groups of two to four engineers, structural

engineers created drawings that illustrated their design

solution and conducted analyses to test its soundness.

Senior engineers supervised the work of junior and mid-

level engineers, who tended to divide their work such

that they each performed the same tasks, but on different

parts of the building. For example, one engineer might

design the bottom two floors of a building while another

engineer designed the top two floors. Each engineer built

models for and ran initial analyses on the floors she

designed.

Although the physics of building structures compels

each floor to bear the load of all the floors above

it, a fact that might suggest the sequential design

of a building from its uppermost floor to its lower-

most, in practice engineers used estimates of other floor

loads to decrease sequential task interdependence among

themselves. Some sequential task interdependence did

remain; for example, owners had to specify materi-

als before floor design could begin. However, on gain-

ing this information, structural engineers worked largely

independently on their assigned floors. When the designs

for all the floors were complete, one engineer pooled all

the floor designs into a model of the entire building and

conducted final analyses. Results of these analyses could

serve as feedback to the engineers who designed, and

had to modify, particular floors.

Like hardware engineering, structural engineering

work simultaneously exhibited aspects of sequential,

reciprocal, and pooled task interdependence, but the

work was organized such that pooled task interdepen-

dence characterized the bulk of daily activity. Under

this organization, engineers were generalists who used

a common set of technologies in the completion of

their work. As in hardware engineering, task interdepen-

dence was largely distinct from technology interdepen-

dence because each engineer made her way through the

sequential progression of interdependent technologies as

she completed the full set of tasks on her own floors

and in other building components. The specific technol-

ogy gaps the engineers encountered varied to the extent

that their choices among substitutable technologies for a

given task varied, but all engineers faced the same num-

ber of gaps in completing the same tasks.

Although technology interdependence was high and

distinct from task interdependence in both occupations,

there were differences in terms of the degree of technol-

ogy substitution and the presence of narrow gaps. These

differences suggested that the manifestation of high tech-

nology interdependence varied by occupation, prompting

us to explore how both hardware and structural engineers

experienced and dealt with technology interdependence

in the course of their everyday work.

Experiencing and Dealing with
Technology Interdependence
In the course of everyday work, pooled technology inter-

dependence posed few direct problems for structural

engineers because having multiple technologies from

which to choose was not terribly troublesome (most

engineers were happy to select their personal favorites).

In contrast, sequential and reciprocal technology inter-

dependence presented structural and hardware engineers

with various kinds of problems and dilemmas in the

context of forward and backward gaps. Therefore, we

examined what engineers experienced and what they did

when they encountered a technology gap.

Our analysis revealed six distinct strategies that an

engineer could take in dealing with a technology gap.

Figure 3 displays these strategies in conjunction with the

size of the gap—wide or narrow—the engineer faced.

Wide gaps presented the engineer with the prospect of

significant time and effort for their traversal; engineers

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
Organization Science 21(3), pp. 713–730, © 2010 INFORMS 721

Figure 3 Strategies at Wide and Narrow Gaps in a Workflow

Flow of work Flow of work

Bridge

Options: Cross
Expand
Bypass

Narrow gap

Technology B Technology BTechnology A Technology A

Wide gap

Options: Navigate
Bridge
Bypass
Stand still Stand still

could choose from among four strategies for how to con-

tend with them. Narrow gaps presented the prospect of

an easier and speedier traversal than that of wide gaps;

engineers could again choose from four strategies (two

unique to narrow gaps, two common with wide gaps) in

dealing with them.

In the case of a wide gap, the engineer might have

decided to traverse the gap by navigating it. To navi-

gate a gap was to transfer, and often transform, the out-

put from the first technology to the input of the second

technology. Navigation facilitated traversal in that one

instance only. In other words, a wide gap that one indi-

vidual navigated still appeared as a wide gap to the next

person who encountered it.

The methods of transfer and transformation used in

navigating a gap almost always required considerable

human effort, typically in the form of routine actions.

Engineers often referred to navigation as having to do

the transfer “by hand,” meaning that no simple keystroke

or command call would complete the task for them.

Rather, navigating required labor-intensive actions, such

as cutting and pasting data, visually inspecting and com-

paring models, manually checking values or equations,

and entering long series of separate commands at a

prompt. Engineers endured, not enjoyed, navigation.

In a navigating example from structural engineer-

ing, the engineer transformed and then transferred out-

put from AutoCAD into an analysis program called

RISA-3D:

Darren opens the text window in AutoCAD and copies

some numbers from it onto a piece of scrap paper.

Then he uses his calculator, slapping it first, because, he

says, its batteries are low. He opens another window for

RISA-3D. He explains that Risa works in feet, not inches,

so he is converting distances between columns on the

drawing and entering the values in the RISA data fields.

He uses the calculator to make the conversion, a simple

division operation.

An alternative to navigating a gap was to bridge it.

Bridging allowed for easier traversal of the gap by less-

ening the effort required for transferring and transform-

ing the output of the first technology into the input of

the second one. In general, bridging meant automating

some portion of the steps required to transfer and trans-

form output to input, perhaps by writing a script to carry

out a series of commands. Establishing a bridge simpli-

fied future traversals by converting a wide gap into a

narrow one. Because bridging laid the groundwork for

future gap encounters, it often took longer than navigat-

ing, which focused only on the immediate encounter and

left nothing behind for the next traversal. Therefore, an

engineer who opted to bridge a gap typically weighed

the benefits of time saved in future traversals against the

cost of additional time spent on the present encounter.

This cost notwithstanding, engineers who engaged in

bridging reported enjoying the opportunity to be creative

by solving the puzzle of transfer and transformation that

was unique to the technologies involved. Bridge creation

was not an everyday affair and thus offered a break from

normal tasks.

An example of bridging is found in the case of a

hardware engineer who had written a diagnostic test to

run on a set of microprocessor configurations. Although

scripts existed for loading and running his test on the

simulator against the configurations one at a time, he

wanted to run his test against each configuration multi-

ple times. He thus wrote a script that built and repeat-

edly sent each configuration to the simulator with his

test code. The script constituted a bridge between the

text editor (in which he created his test code) and the

simulator (on which he would run it), a bridge that he

could use again any time he wanted to traverse this same

gap.

In our observations rarely did an engineer who

encountered a technology gap opt to bypass it or stand
still at its edge, but these options did exist. A gap was

bypassed when the engineer managed to complete his

task without having to deal with the gap. For example,

he might have bypassed a gap by selecting an alterna-

tive second technology whose input requirements were

more sympathetic to the first technology’s output. Alter-

natively, an individual might have opted to stand still
at the edge of a gap by halting his efforts to proceed.

Because an engineer who encountered a technology gap

typically had some task to complete that he could not

ignore—perhaps to create a document, build a model,

run an analysis, or interpret data—the option to stand

still was rarely observed.

In the case of narrow gaps, the strategy options

were slightly different. Navigation and bridging were no

longer options, presumably because the gap was narrow

and could be easily traversed simply by crossing it. To

cross a gap was to expend very little effort in guiding the

output of the first technology to the second one, where it

served as the input. No manipulation of the output was

required, typically because the individual who crossed a

gap did so via a bridge from an earlier traversal. When

Eric ran his diagnostic test on a microprocessor con-

figuration by simply typing the “make” command with

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
722 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

Table 3 Strategies for Dealing with Gaps by Occupation

Structural engineering Hardware engineering

N Percent N Percent

Navigate 117 92 72 39

Bridge 0 0 3 2

Bypass 0 0 1 1

Stand still 1 1 0 0

Cross 8 6 105 57

Expand 1 1 2 1

Total 127 100 183 100

two parameters, that constituted an example of crossing

a gap. He was able to feed the results of his component

modeling into his diagnostic test by using a script that

had been created earlier. Crossing gaps allowed engi-

neers to proceed quickly with the rest of their work.

Rather than crossing a narrow gap, an individual could

decide to expand it. By expanding a narrow gap, he

chose to undo, if only in that single instance, whatever

action previously bridged it, perhaps because he con-

sidered that action an inappropriate or inelegant way to

deal with the gap. We saw a hardware engineer expand

a narrow gap one day when he decided that, rather than

run an existing script that would automatically send his

component code to the simulators with a suite of tests,

he would complete each step of the process “by hand”

(i.e., he would enter individual commands one by one)

so that he could determine where a problem was occur-

ring. Theoretically, individuals could also bypass narrow

gaps or stand still at their edge; we never observed these

actions at narrow gaps, presumably because traversing

narrow gaps was relatively easy.

In both occupations, the engineers we observed typ-

ically navigated wide gaps and crossed narrow ones.

However, because wide gaps were much more common

in structural engineering than in hardware engineering,

engineers in that field were much more likely to navigate

a gap than to cross one. Table 3 shows that structural

engineers navigated 92% of the gaps they encountered;

in contrast, hardware engineers only navigated 39% of

their gaps. Hardware engineers more commonly crossed

gaps (57%), a high rate in comparison to structural engi-

neers (6%).

Engineers in neither occupation bridged, bypassed,

expanded, or stood still at gaps very frequently. How-

ever, hardware engineers told many stories of gaps that

they had bridged in the past, often proudly showing the

scripts they had written, as explained by this engineer:

Timing Design is a program to draw waveforms. In it,

you have to click all over to draw something. I didn’t like

that. And I don’t want to draw it by hand. So I wrote a

little program called Text2TimingDesigner. With my little

program I can write text files and it generates waves. I

have written lots of little programs to do things for me.

I keep them in a directory. It’s laziness. You can write it

once and then you have it; it automates for you.

Structural engineers related no such stories. Indeed,

Table 3 indicates that hardware engineers predomi-

nantly crossed gaps (57%), whereas structural engi-

neers rarely had that opportunity (6%). These data show

that although we did not often observe hardware engi-

neers actively bridging gaps, there is evidence that many

bridges had been built because a gap could not be

crossed if it was not previously bridged. In contrast,

structural engineers did not routinely cross gaps because

they had not previously bridged many gaps.

Overall, traversing gaps in structural engineering was

an arduous affair. Most gaps were wide and thus required

time and effort to navigate via the carrying out of often

routine and mundane actions. In comparison, traversing

gaps in hardware engineering was easy because most

gaps were narrow, making crossing the most common

strategy and allowing engineers to carry on quickly with

the rest of their work. Our findings indicate that the

width of a gap was not fixed by the technologies on

either side of it; engineers could alter this width by,

for example, bridging wide gaps to make them nar-

row. Thus, engineers seemingly had the potential to

increase coordination among technologies via smoother

interfaces in the form of narrow gaps; in so doing,

they could arguably better manage technology interde-

pendence. This possibility prompted our third and final

question: Why did engineers in one occupation manage
high technology interdependence in ways that led to high
coordination among technologies while engineers in the
other occupation did not? Specifically, why did struc-

tural engineers persist with navigating wide gaps rather

than bridging them to facilitate easier traversals like the

hardware engineers did?

Coordination and Technology Interdependence
We approach the question of differences in coordination

by first considering what factors enabled hardware engi-

neers to narrow the gaps among their technologies and

then turning to structural engineering to see if the same

or different factors existed there. In hardware engineer-

ing, the high cost of technologies worked against the

possibility of having multiple equivalent technologies to

perform any given task. With only one technology on

each side of a technology gap, narrowing the gaps was a

straightforward, if still difficult, task because complex-

ity of the interface problem for inputs and outputs was

greatly reduced. With the output from a single technol-

ogy serving as the sole input to the next one, only one

interface problem had to be resolved at each technology

gap.

These interface problems greatly attracted the atten-

tion of hardware engineers, who explicitly recognized,

frequently discussed, and overtly managed technology

interdependence, going so far as to give it a name: “the

design flow.” We observed hardware engineers contem-

plating whether their design flow could support new

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
Organization Science 21(3), pp. 713–730, © 2010 INFORMS 723

microprocessor configurations, arguing about whether to

change the flow to satisfy customer requests and mulling

over how to build new flows for new microprocessor

cores. Similar to efforts in production settings, concerted

efforts were made to improve the efficiency of the design

flow by embedding multiple functions in single tech-

nologies and purchasing new technologies to replace

technologies with problematic interfaces.

A primary criterion in new technology selection

was thus the technology’s “fit” with the flow, namely,

whether it could be placed seamlessly between two

existing technologies without wreaking havoc on inputs

and outputs. To learn about new technologies, hard-

ware engineers visited vendors’ booths at the industry’s

annual conference; we saw them preparing for these vis-

its by discussing with their colleagues which vendors

to see and what technology features to inspect. Ven-

dors pitched new technologies, as we observed during

an in-house presentation, by explaining how easily the

technologies could fit in a firm’s design flow. After hear-

ing such pitches, engineers independently evaluated new

technologies’ fit prior to purchase, as this hardware engi-

neer described:

I have been testing the flow of a CAD tool called Blast

Fusion from Magma [the vendor]. So far, I have mostly

verified that the flow works and everything is fine, so the

other projects can go ahead and use that tool.

Following technology selection, hardware engineers

narrowed gaps by bridging them, namely, by writing

scripts that automated the transfer of output. To auto-

mate this transfer was, in a sense, to abdicate control

by forgoing the opportunity to review output. Hardware

engineers felt comfortable in relinquishing this review

opportunity because they were confident that unsound

design as created in one technology would be detected

by error-checking features in subsequent technologies.

In addition, the size and complexity of hardware designs,

with literally hundreds of thousands of transistors to be

laid out and perhaps tens of thousands of code files

called in the course of a test, made human inspection of

results very difficult. The challenge was to think of all

possible forms of failure (a problem known as “cover-

age”), not to worry that any particular problem could not

be caught by technologies once it was identified and a

suitable program written to test for it. As a result, most

gaps in the forward design flow were narrow, mean-

ing that someone had bridged them to reduce human

involvement in transferring output.

Beyond visiting vendors’ booths at the annual industry

conference and inviting vendors to give in-house pre-

sentations of new technologies, hardware engineers also

entered into partnerships with vendors for the develop-

ment and licensing of new technology features. Hard-

ware engineers further interacted with external par-

ties via online bulletin boards that were hosted on

independent hardware engineering community websites.

Through such electronic media, engineers across com-

peting hardware engineering firms discussed and evalu-

ated new technologies. Information sharing among peers

across firms also occurred in trade magazines, which

regularly featured interviews of engineers whose firms

were among the first to purchase particular technolo-

gies. Engineers in these interviews reported how well the

technology fit in their firm’s design flow. The engineers

we observed contributed to, read, and made use of such

print and online information. For example, one engineer

was interviewed by a magazine about the firm’s use of a

new logic checking application, another engineer made

a post to a Web forum about a parsing program, and

a third engineer downloaded from a vendor-supported

user-group website a script for bridging a gap to a file-

sharing application.

Internal bridge building was also supported and for-

mally organized. Hardware engineers were assigned to

serve as gurus for specific technologies, charged with

answering colleagues’ questions and keeping up to date

on new features and products. As part of this duty, gurus

were expected to build bridges, as described by this

engineer:

Most of these tools have ways of automating tasks and

writing scripts that would help you do the common tasks.

And so one of the things we have done is [have] the per-

son who is an expert in that help set up some standard

scripts or templates, and in many of your applications,

you could just use that set-up as is or do minor modifica-

tions to it, and you don’t necessarily need to understand

exactly every step of the way. There is an automation

mechanism created by this expert.

In addition, systems administrators were used to main-

tain the computer network, to manage licenses, to pre-

pare technology budgets, and to help assess the fit of

potential new technologies in the design flow. These

examples make clear that two factors shaped the goal of

high coordination among interdependent technologies:

(1) the belief that bridging activities automated tasks that

were of marginal importance or that involved knowledge

that could be codified, and (2) occupational ideas of effi-

ciency. Furthermore, this goal was institutionalized in

occupational roles. In short, managing technology inter-

dependence in hardware engineering was a shared task

among a range of individuals.

None of these bridge-building efforts, however,

involved backward gaps. Backward gaps in the hard-

ware engineering flow were left wide because feedback

from testing programs typically prompted code modifi-

cations. These modifications almost always required crit-

ical engineering intuition and judgment, which hardware

engineers believed no technology could adequately pro-

vide. Trace logs used for debugging, for example, could

highlight for hardware engineers what kind of problem

occurred, where it occurred, and what ramifications it

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
724 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

had. However, the trace logs could not tell the engi-

neers what caused the problem (e.g., giving a variable

a wrong name, mistakenly calculating the timing of an

event, or putting the wrong data in a register). To narrow

backward gaps by entering the testing feedback as direct

input into a technology for modifying code far exceeded

the analytic capabilities of technologies. Whereas hard-

ware engineers believed that bridges built across forward

gaps automated tasks that required routine or codifiable

knowledge, they were certain that contending with feed-

back required skilled problem solving on the part of the

engineer, resulting in no narrowing of backward gaps.

Unlike hardware engineers, structural engineers did

not use the phrase “design flow” or any equivalent term.

Structural engineers understood technology interdepen-

dence in the context of their work (that is to say, they rec-

ognized the issues of transfer and transformation as work

products traveled among technologies), but, compared to

hardware engineers, they managed this interdependence

much less fastidiously. That is not to say that structural

engineers never purchased new technologies to improve

their flow, but, in general, they purchased new technolo-

gies absent the detailed probing, extended vendor interac-

tion, and assessment witnessed in hardware engineering.

Perhaps as a result, new technology purchases did little

to streamline the flow. In a case described by a senior

engineer, the modeling assumptions of a new applica-

tion were not aligned with the assumptions that engineers

routinely made. Consequently, although the application

automated one task, using it required the extra step of

transforming input data:

We needed a good tool to do three-dimensional modeling.

If you have a rectangular building with all the floors the

same, then you ought to be able to build a model that

puts in all the coordinates for you automatically, which

is what this new software does. However, because some

programmer assumed that your model is parallel to the

y axis, we have to re-input all of the data. That is a

ridiculous assumption to make. Programmers don’t really

know what assumptions make sense.

At least three factors prevented greater coordination

among interdependent technologies in structural engi-

neering. The first was the availability of multiple tech-

nologies for most tasks. As we noted, the low purchase

cost of software and the continued validity of the domain

knowledge that underpinned the algorithms embedded in

software meant that, over time, numerous technologies

existed for most tasks. Choosing which technology to

use was often a matter of engineers’ preference, with

no consensus on which one was “best.” The multiplicity

of technologies resulted in little standardization of input

and output formats, which meant that multiple interface

problems had to be solved. For example, if four tech-

nologies were available for one task and only one tech-

nology for the follow-on task, four distinct gaps existed.

If two technologies rather than one were available for the

second task, the number of gaps jumped to eight. In this

sense, although pooled technology interdependence gen-

erated no problems for structural engineers when they

were choosing within a set of technologies for a task, it

did contribute to larger problems associated with travers-

ing gaps between technologies in sequential sets.

Why not simply ban certain technologies to reduce the

magnitude of the interface problem? The answer to that

question may be found in the second factor that impeded

the narrowing of technology gaps in structural engi-

neering: the belief among senior engineers that younger

engineers’ fondness for and reliance on computer anal-

ysis prevented them from gaining fundamental design

knowledge. Such knowledge was important in structural

engineering because software programs for testing and

analysis could verify that a design was sound given its

assumptions. However, they could not assess whether the

assumptions themselves were appropriate. Senior engi-

neers thus stressed the continued occupational value of

verifying one’s assumptions by traditional practices such

as tracing load paths through drawings and using proven

approximations to estimate forces rather than repeatedly

running simulations until a “feasible”—but all too often

unrealistic—solution was achieved. The comments of a

senior engineer about an analysis software application

whose built-in assumptions ran contrary to the physics of

a particular building design illustrate the tension between

computer analysis and traditional design practices:

That software has several weird assumptions, including

a fixed-base assumption. I reviewed a building where it

had been used. I could tell just by looking at it that it was

a poor design. They sent me reams of computer printouts

from it, but all I needed to do was look at the drawing.

There was a place on the drawing where a beam came

in at a 45-degree angle, and that beam was huge because

the engineer said it was taking all the load because it

had a fixed base. But beside it was this other beam, and

it was really skinny. And the thing is, the software kept

telling the engineer to make the first beam bigger, and it

kept taking more of the load, so it got bigger and bigger

and this other one got really skinny. But that was all

based on the assumption of the fixed base, and in reality

it wasn’t fixed at all! In fact, this thing was sitting on

almost nothing, so all the load really had to go through

that very skinny member. It all happened because some

young kid out of college learned the software, and just

did what the software told him to do.

Senior engineers reasoned that leaving wide forward

gaps aided in the occupational training of junior engi-

neers by cultivating the development of design knowl-

edge. For this reason, senior engineers placed little

emphasis on improving work efficiency by narrowing

gaps. Similar logic explains why structural engineers

left wide backward gaps. Like hardware engineers, they

recognized that design modifications based on feedback

required engineering judgment that occupational mem-

bers deemed too important to lose to automation.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
Organization Science 21(3), pp. 713–730, © 2010 INFORMS 725

Liability concerns were a third factor that lessened the

perceived importance of narrowing gaps in structural engi-

neering. The engineer who submitted a building’s design

for a county permit was held responsible if the struc-

ture failed. Avoiding liability problems meant designing

structures free of major errors. Unlike hardware engi-

neers, structural engineers did not trust that software

programs could adequately test for every identified type

of error. In addition, structural engineers viewed each

design as unique, with idiosyncratic design issues that

required careful reflection and reexamination through

each step of design and analysis. Consequently, struc-

tural engineers were reticent to narrow technology gaps,

and in doing so abdicate control to the analysis applica-

tions, because they could ill afford to lose the discretion

to apply their occupational knowledge and expertise.

These deterrents to narrowing gaps in this field help

explain why structural engineers had limited interaction

with individuals outside the firm who might aid them

in bridge-building activities. Structural engineers occa-

sionally did send feedback to vendors about technology

problems, typically via forms on the vendors’ websites.

However, they did not engage in more proactive co-

development or licensing activities. In addition, struc-

tural engineers neither attended conferences dedicated to

new technologies nor communicated electronically with

other members of the profession in external firms about

technologies.

Overall, for structural engineers, plying a path among

interdependent technologies was primarily a solitary,

unassisted endeavor. Because senior engineers in partic-

ular viewed the navigation of wide gaps as beneficial for

the cultivation of occupational design knowledge and as

prudent in the face of liability concerns, there was little

imperative to improve technology coordination by lim-

iting the number of technologies that lined each gap in

structural engineering: If easy gap traversal was not the

goal, then all traversal options, being rather equally ardu-

ous, were viable, leaving no good reason to deny an engi-

neer his preference. For similar reasons, engineers were

not encouraged to build bridges across technology gaps.

Discussion
Implications for Theories of Organizing Work
At the broadest brush, interdependence among technolo-

gies looks quite similar to interdependence among peo-

ple. When complex tasks are divided into subtasks to be

completed by different technologies (people), the tech-

nologies (people) must integrate their component parts

to finish the whole task and hence are interdependent

(see Thompson 1967). The division of work among tech-

nologies (people) creates gaps; the completion of work

requires integration across these gaps. In short, interde-

pendence entails minding the gaps created in the divi-

sion of work. Where technology interdependence departs

from task interdependence is in the degree of coordina-

tion required to mind these gaps successfully.

In the case of interdependence among people, orga-

nizations enact routines, plans, and schedules in the

hopes of minding the gaps via strong coordination

(Malone and Crowston 1994). Communication is another

main coordinating mechanism (March and Simon 1958).

Beyond explicit mechanisms such as routines and com-

munication, interdependent individuals may also implic-

itly coordinate work by anticipating the actions and

needs of team members and adjusting their own actions

accordingly (Rico et al. 2008). Heath and Staudenmayer

(2000) argued that, despite this multiplicity of coordina-

tion mechanisms, individuals often neglect coordination

across interfaces because they are too cognitively pre-

occupied with the act of partitioning the large task into

component tasks (and with the individual components

created by this partitioning) to pay sufficient attention

to integrating the components back into a whole. Heath

and Staudenmayer further claimed that individuals may

neglect coordination when they inadequately communi-

cate or insufficiently translate across interfaces. Neglect-

ing coordination can be detrimental because research

on interdependence among people is universal in its

contention that successful completion of interdependent

tasks requires coordination; the higher the interdepen-

dence is, the greater is the need for coordination (e.g.,

Ilgen 1999, Rico et al. 2008, Wageman 1995).

In the case of interdependence among technologies,

efforts to mind the gaps typically focus on standardizing

input and output, as in the case of exchange and file for-

mats for digital technologies. Problems of coordination

across interfaces, or what we have termed technology

gaps, are frequently posed as problems of interoperabil-

ity, which refers to the ability of technologies to share

data with ease (March et al. 2000). In our study, hard-

ware engineers coordinated technologies through bridge-

building activities, such as writing scripts to automate

the transfer of data from one technology to another.

Coordination was also the goal when hardware engi-

neers purchased new equipment that fit into the design

flow. In contrast, structural engineers often neglected to

coordinate their technologies, but not for the reasons

outlined by Heath and Staudenmayer (2000). Rather,

structural engineers purposefully eschewed high coor-

dination because they believed that navigating difficult

interfaces promoted the development of necessary occu-

pational design knowledge.

In addition, liability concerns and the inability of tech-

nologies to thoroughly test building designs provided

structural engineers with good reason to maintain diffi-

cult interfaces as opportunities for examination of mod-

els and reflection on their soundness. Thus, although

engineering work in both occupations was divided across

a range of technologies and had to be integrated for com-

pletion of the whole, coordination was much greater in

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
726 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

one occupation than in the other. In short, greater coor-
dination of technologies was not universally sought or
necessary for successful completion of highly interde-
pendent tasks.
Our findings have important implications for theo-

ries of organizing work. These findings suggest that the
division of work among technologies can support larger
occupational and organizational goals. Correct placement
of technology gaps via this division can serve, for exam-
ple, to enable quality inspection of the product, to meet
training needs of individuals, to preserve occupational
knowledge, and possibly even to maintain the status dis-
tinction between senior and junior engineers. One might
infer then that incorrect placement would inhibit achieve-
ment of these goals. Longer segments of work could be
assigned to a single technology whenever occupational
and organizational goals did not require a break in the
form of a technology gap. Overall, efforts to improve
work productivity by bridging technology gaps without
considering occupational and organizational goals could
disrupt beneficial, albeit time-consuming, gap traversal
strategies that meaningfully contribute to the develop-
ment of the product or the workforce.

Implications for Theories of
Social Dynamics of Work
Our findings also have implications for theories related
to the social dynamics of work. Studies of interdepen-
dence among people have shown that interdependence
is related to cooperation, learning, citizenship, help-
ing, motivation, and satisfaction (Spriggs et al. 2000,
Van der Vegt et al. 2003, Wageman 1995, Wageman
and Baker 1997). For example, Wageman (1995) found
that highly interdependent work groups exhibited high
cooperation, helping, and mutual learning that were less
apparent among low interdependence groups. In the case
of interdependence among technologies, human effort is
required to traverse gaps. Therefore, cooperation, help-
ing, and other social dynamics in relation to technology
interdependence can be viewed from the perspective of
how individuals interact with respect to gap traversal.
When hardware engineers built bridges to traverse gaps,
they were engaged in cooperation and helping because
bridges could be used by everyone (given that each engi-
neer worked with the same suite of technologies, an
outcome of how work was divided among people). Engi-
neers saw bridge-building actions as helping even though
the first person aided by the bridge was the builder
himself. These results among hardware engineers sug-
gest that, when coordination is the goal and when task
interdependence is structured such that many individuals
experience technology interdependence identically, high
technology interdependence will be associated with high
levels of helping until all gaps are bridged.
Among structural engineers, social dynamics were

heavily influenced by occupational hierarchy, a situa-
tion that we did not observe among hardware engineers.

Through their decisions to maintain multiple technolo-

gies and their development of norms that downplayed

bridge-building efforts, senior structural engineers acting

as managers shaped how junior engineers traversed tech-

nology gaps, forcing them to navigate rather than cross

gaps. Senior engineers designed explicit policies around

technology interdependence and coordination that were

not aimed at managing technology most efficiently, for

to do so would surely have involved streamlining the

design flow and automating the transfer of work prod-

ucts across technology gaps. Rather, their decisions with

respect to technology interdependence were aimed at

managing engineers in a manner consistent with devel-

opmental goals and liability concerns that reflected occu-

pational and industry concerns, respectively.

In the case of structural engineers, unlike that of

hardware engineers, the most salient social dynamics

appeared to be independent of the structure of task inter-

dependence. That is to say, senior structural engineers

maintained wide technology gaps even if, for example,

work moved from one engineer to another at the same

time it transferred from one technology to another. In

structural engineering, a change in who does what with

which technology would not alter the need to develop

design knowledge or to examine models for their sound-

ness. In contrast, in hardware engineering, the social

dynamics appeared to be an outcome of the particu-

lar confluence of task and technology interdependence.

Bridge-building activities conceivably would look dif-

ferent if hardware engineers handed off work to one

another across technology gaps, because a bridge built

from one’s own technology to the one before it would

only help oneself (enabling better transfer to one’s tool),

and a bridge built to the technology after it would only

help the next engineer (enabling better transfer to that

tool). Consequently, the value of each bridge would be

localized, and helping would be less visible to the group

as a whole. In short, if task and technology interdepen-

dence were more closely aligned in hardware engineer-

ing, the motivation for building bridges might change,

so bridge-building activity might look different than it

did with pooled task interdependence with sequential

technology interdependence. Overall, across both occu-

pations, it seems clear that technology interdependence

was related to a particular set of social dynamics.

Looking Forward
Given that knowledge tasks are becoming increasingly

data driven (Carlson 2001, Dodgson et al. 2007, Markus

2004) and technologies are often used to automate rou-

tine work processes (Henderson 1998, Stohr and Zhao

2001, Suchman 2007), might not all occupations even-

tually come to deal with technology gaps in a manner

similar to the way hardware engineers deal with them?

One way of answering this question is to first consider

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
Organization Science 21(3), pp. 713–730, © 2010 INFORMS 727

whether structural engineers might someday bridge tech-

nology gaps.

Far from being Luddites, structural engineers were

early adopters of computerization beginning more than

50 years ago (Bédard 2006). With the introduction of

the desktop computer in the 1980s, a growing market

for applications provided engineers with many options.

Today, calls for integration across these technologies cer-

tainly exist, but given the fragmentation of construction

projects across architectural firms, engineering firms,

and contractors, the calls are primarily aimed at interfirm

communication and data sharing (e.g., Rosenman et al.

2007, Yang and Zhang 2006). Much of the ensuing dis-

cussion is thus ontological, centering on the construction

of standard data and interface formats to facilitate shar-

ing of models across similar tools in different firms.

In other words, the focus is on, for example, allow-

ing architects and engineers with different CAD tools

to view the same geometric model, rather than on help-

ing a structural engineer easily transfer her geometric

model created in a CAD tool to her computational tool

for analysis. Although some research efforts are aimed

at sharing data more easily up and down the struc-

tural engineering design flow (e.g., Senescu et al. 2006),

these efforts are not center stage. Given the imperatives

imposed by occupational development and industry lia-

bility, it seems doubtful that senior structural engineers

will deem technology gaps within their firm as prob-

lematic as gaps across their firm to architects and con-

tractors. As a result, structural engineers are unlikely to

streamline technologies within their firms as hardware

engineers have.

More broadly, in knowledge occupations beyond engi-

neering, we suspect that a number of factors may render

the narrowing of wide gaps impractical, infeasible, or

unwise. Cost is one such possibility: Firms may find that

the cost of closing gaps is simply too high. Cost may

prove a factor especially when in-house personnel lack

the technical skills to manipulate technology interfaces,

thus forcing the firm to consider contracting with exter-

nal consultants, purchasing off-the-shelf applications, or

hiring additional staff. Quite a few knowledge occupa-

tions are likely to reveal issues of liability that, as in

the case of structural engineers, lend high value to wide

gaps; lawyers, doctors, and stockbrokers seem among

the likely candidates. Outsourcing or offshoring jobs at

the task level requires wide technology gaps to allow

transfer of the work between individuals (Leonardi and

Bailey 2008). Similarly, task interdependencies across

an organization’s various functions and departments may

correspond with wide technology gaps whose narrowing

would impinge on existing successful work practices.

Enterprise resource planning (ERP) systems, or large-

scale commercial software applications intended to inte-

grate transaction-oriented work processes within a firm,

arguably pose the greatest threat to the persistence of

wide technology gaps in many knowledge occupations.

ERP system implementation closes wide gaps by replac-

ing independent computer applications, often unique to

each function, with a set of interrelated programs in

functional modules. The modules and their interfaces

are standardized and permit little modification (Robey

et al. 2002). Thus, when a firm implements an ERP

system, it ignores the possibility that wide gaps may

have served valuable purposes, often because the firm

attributes their existence solely to the ad hoc acquisition

of disjoint software applications over time. Boudreau

and Robey’s (2005) finding that ERP users developed

workarounds even in the face of such a rigid technology

suggests that these users may have sought ways to over-

come the loss of control that accompanied the closing

of wide gaps. Moreover, many organizations that adopt

ERP systems find that they need to maintain some legacy

programs and that linking those programs to the ERP

system is difficult, meaning that narrow gaps are not

easily achieved (Markus et al. 2000). Overall, research

to date suggests that even large-scale integrated busi-

ness systems are unlikely to remove all wide gaps in an

organization.

Decreases in technology costs prompt a second, alter-

native future to one in which most wide gaps are nar-

rowed, in that all occupations might come to look like

structural engineering with its multiple technologies per

task. We can begin to evaluate the likelihood of this

possibility by first considering whether hardware engi-

neers might someday have duplicate technologies for

each task.

In hardware engineering, tasks continue to grow in

complexity. Consider the task of verification: Because

verification involves investigation of the total possi-

ble states of a chip’s storage elements, the size of

the verification problem is essentially Moore’s law

squared (MacMillen et al. 2000). To handle the increas-

ing complexity of verification, hardware engineers have

increased the level of abstraction at which they sim-

ulate models (Sangiovanni-Vincentelli 2003). In addi-

tion, new tools have been developed to formally check

models (MacMillen et al. 2000). Because increasing

complexity forces hardware engineers to simultaneously

upgrade their current tools and add new tools to perform

new subtasks, hardware engineers are unlikely to spend

money on duplicate technologies for any step in the

design flow even if technology prices begin to decrease.

More broadly, one can think of several other rea-

sons some occupations might opt for a single technol-

ogy per task. Perhaps, for example, an occupation may

wish to ensure standardization of its product through

use of a single technology whose processes and output

are well understood. Smooth interfaces among existing

technologies may similarly argue against the introduc-

tion of duplicate technologies for fear of introducing

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
728 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

transfer problems that might impact productivity or qual-

ity; this possibility seems most likely in occupations

whose members’ skills do not include extensive tech-

nology manipulation. Firms may avoid duplication when

implementation and maintenance costs of multiple tech-

nologies are prohibitive even though purchase costs are

low. Finally, occupations that favor automation are apt to

choose single technologies over multiple ones. In short,

lower technology costs are unlikely by themselves to

lead to a proliferation of technology options, and with

them many wide gaps.

Although technology advances and decreases in cost

are unlikely to alter our findings, there is still much

to learn about technology interdependence, particularly

in relation to task interdependence. In our study, tech-

nology interdependence was primarily sequential and

task interdependence was primarily pooled. Because all

engineers worked with the same suite of technologies

on their distinct tasks, any change in the management

of technology interdependence (e.g., the construction

of a bridge) affected the work of all engineers (e.g.,

each engineer could traverse the bridged gap faster than

before), but did not alter their task interdependence. The

separation of task and technology interdependence in our

study limits what we can say about their relationship. A

simple thought experiment, however, suggests that if the

two forms of interdependence are more tightly aligned,

then changes in how technology interdependence is man-

aged may have important implications for task interde-

pendence and for occupational roles.

Consider the automotive engineering task of building

and analyzing a digital simulation of a car crash. This

task may be divided between two people such that the

first person, a design engineer, is charged with design-

ing the car and the second person, an analysis engi-

neer, is charged with analyzing the design in a digital

simulation. Sequential task interdependence is high: The
analysis engineer cannot run the simulation absent the

design of the car. Sequential technology interdependence
also exists. The design engineer uses a CAD technology;

the analysis engineer uses a computer-aided engineer-

ing (CAE) technology. Output from the CAD technol-

ogy serves as input to the CAE technology, and vice

versa in the case of feedback. If the technologies were

to become highly coordinated (e.g., if bridges were built

to cross the forward and backward gaps), task inter-

dependence could change dramatically. High coordina-

tion could collapse the existing occupational division

between design and analysis; if output from the CAD

technology automatically fed into the CAE technology,

the distinct roles of “design engineer” and “analysis

engineer” might become obsolete. This thought exper-

iment demonstrates that the level of coordination used

to manage interdependent technologies has the poten-

tial to alter task interdependence and hence to reshape

occupational roles. This experiment thus points to the

potential of empirical research that explores the rela-

tionship between technology interdependence and task

interdependence.

Future studies of forms of knowledge work may also

discover yet more strategies that individuals use in deal-

ing with technology gaps, adding to the typology that we

created. New strategies may serve as behavioral clues

to different occupational or organizational goals that are

manifested in the coordination of technology. Such stud-

ies might also uncover situations in which individuals

bridge backward gaps; the engineers in our study did not

do so because traversal of these gaps required intuition

and expertise that could not be given over to technolo-

gies. In other settings, traversing backward gaps may not

require such skills.

More thorough inquiry is also required into the fac-

tors that shape technology interdependence; our study

has uncovered several factors that appeared instrumen-

tal in the occupations we studied, but many more are

likely to exist. Overall, the concepts of technology gaps

and gap encounters that we put forward in this paper

are but a first step in unraveling technology interdepen-

dence; future studies may develop other concepts that

will deepen our understanding of this construct.

Acknowledgments
The authors thank Mahesh Bhatia, Fabrizio Ferraro, Menahem

Gefen, Julie Gainsburg, and Lesley Sept for their assistance

in data collection. The authors also thank the engineers for

graciously allowing their work to be observed and for sharing

their thoughts. This manuscript benefited immensely from the

comments of three anonymous reviewers for Organization Sci-
ence and Senior Editor Ann Majchrzak. Stephen Barley and

two anonymous reviewers from the Academy of Management

OCIS division provided helpful comments on earlier versions

of this paper. This research was made possible by National

Science Foundation (NSF) Grant IIS-0070468. The General

Motors–Stanford Collaborative Research Laboratory provided

additional funding.

Endnotes
1In some cases, such functions arguably represented technol-

ogy gaps that had been managed by placing a standalone appli-

cation within another program, but distinctions of this sort

would have burdened our analysis efforts too heavily.
2A kip is a kilo-pound; one kip equals 1,000 pounds.

References
Bachrach, D. G., B. C. Powell, E. Bendoly, R. G. Richev. 2006.

Organizational citizenship behavior and performance evalua-

tions: Exploring the impact of task interdependence. J. Appl.
Psych. 91(1) 193–201.

Barley, S. R. 2005. What we know (and mostly don’t know) about

technical work. S. Ackroyd, R. Batt, P. Thompson, P. S. Tolbert,

eds. The Oxford Handbook of Work and Organization. Oxford
University Press, Oxford, UK, 376–403.

Bédard, C. 2006. On the adoption of computing and IT by industry:

The case for integration in early building design. I. F. C. Smith,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
Organization Science 21(3), pp. 713–730, © 2010 INFORMS 729

ed. Intelligent Computing in Engineering and Architecture. Lec-
ture Notes in Computer Science, Vol. 4200. Springer, Heidel-
berg, Germany, 62–73.

Boland, Jr., R. J., K. Lyytinen, Y. Yoo. 2007. Wakes of innovation

in project networks: The case of digital 3-D representations in

architecture, engineering, and construction. Organ. Sci. 18(4)
631–647.

Boudreau, M.-C., D. Robey. 2005. Enacting integrated information

technology: A human agency perspective. Organ. Sci. 16(1)
3–18.

Campbell-Kelly, M. 2003. From Airline Reservations to Sonic the
Hedgehog: A History of the Software Industry. MIT Press,

Cambridge, MA.

Carlson, P. A. 2001. Information technology and organizational

change. J. Technical Writing Comm. 31(1) 77–95.

Carrillo, J. E., C. Gaimon. 2000. Improving manufacturing perfor-

mance through process change and knowledge creation. Man-
agement Sci. 46(2) 265–288.

de Jong, S. B., G. S. Van der Vegt, E. Molleman. 2007. The relation-

ships among asymmetry in task dependence, perceived helping

behavior, and trust. J. Appl. Psych. 92(6) 1625–1637.

Dodgson, M., D. M. Gann, A. Salter. 2007. “In case of fire, please

use the elevator”: Simulation technology and organization in fire

engineering. Organ. Sci. 18(5) 849–864.

Downey, G. L., A. Donovan, T. J. Elliott. 1989. The invisible engi-

neer: How engineering ceased to be a problem in science and

technology studies. Knowledge Soc. 8 189–216.

Ecker, K. H., J. N. D. Gupta. 2005. Scheduling tasks on a flexible

manufacturing machine to minimize tool change delays. Eur. J.
Oper. Res. 164(3) 627–638.

Espinosa, J. A., J. Lerch, R. Kraut. 2004. Explicit vs. implicit coor-

dination mechanisms and task dependencies: One size does not

fit all. E. Salas, M. Fiore, eds. Team Cognition: Understanding
the Factors That Drive Process and Performance. APA Books,

Washington, DC, 107–129.

Faraj, S., L. Sproull. 2000. Coordinating expertise in software devel-

opment teams. Management Sci. 46(12) 1554–1568.

Glaser, B. 1978. Theoretical Sensitivity. The Sociological Press, Mill

Valley, CA.

Gray, A. E., A. Seidmann, K. E. Stecke. 1993. A synthesis of deci-

sion models for tool management in automated manufacturing.

Management Sci. 39(5) 549–567.

Guzzo, R. A., G. P. Shea. 1992. Group performance and intergroup

relations in organizations. M. D. Dunnette, L. M. Hough, eds.

Handbook of Industrial and Organizational Psychology, 2nd ed.

Consulting Psychologists Press, Palo Alto, CA, 269–313.

Heath, C., N. Staudenmayer. 2000. Coordinating neglect: How lay

theories of organizing complicate coordination in organizations.

B. M. Staw, R. I. Sutton, eds. Research in Organizational Behav-
ior. JAI Press, Greenwich, CT, 153–191.

Henderson, K. 1998. The role of material objects in the design pro-

cess: A comparison of two design cultures and how they contend

with automation. Sci., Technology Human Values 23(2) 139–174.

Ilgen, D. R. 1999. Teams embedded in organizations: Some implica-

tions. Amer. Psychologist 54(2) 129–139.

Langfred, C. W. 2007. The downside of self-management: A longitu-

dinal study of the effects of conflict on trust, autonomy and task

interdependence in self-managing teams. Acad. Management J.
50(4) 885–900.

Leonardi, P. M., D. E. Bailey. 2008. Transformational technologies and

the creation of new work practices: Making implicit knowledge

explicit in task-based offshoring. MIS Quart. 32(2) 411–436.

Linden, R. C., S. J. Wayne, L. K. Bradway. 1997. Task interdepen-

dence as a moderator of the relation between group control and

performance. Human Relations 50(2) 169–181.

MacMillen, D., M. Butts, R. Composano, D. Hill, T. W. Williams.

2000. An industrial view of electronic design automation.

IEEE Trans. Comput.-Aided Design Integrated Circuits Systems
19(12) 1428–1448.

Malone, T. W., K. Crowston. 1994. The interdisciplinary study of

coordination. ACM Comput. Surveys 26(1) 87–119.

March, J. G., H. Simon. 1958. Organizations. John Wiley & Sons,

New York.

March, S., A. Hevner, S. Ram. 2000. Research commentary: An

agenda for information technology research in heterogeneous and

distributed environments. Inform. Systems Res. 11(4) 327–341.

Markus, M. L. 2004. Technochange management: Using IT to drive

organizational change. J. Inform. Tech. 19(1) 4–20.

Markus, M. L., S. Axline, D. Petrie, S. C. Tanis. 2000. Learning from

adopters’ experiences with ERP: Problems encountered and suc-

cess achieved. J. Inform. Tech. 15(4) 245–265.

Mohr, L. B. 1971. Organizational technology and organizational struc-

ture. Admin. Sci. Quart. 16(4) 444–459.

Morisi, T. L. 1996. Commercial banking transformed by computer

technology. Monthly Labor Rev. 119(8) 30–36.

Naveh, E., M. Erez. 2004. Innovation and attention to detail in the qual-

ity improvement paradigm. Management Sci. 50(11) 1576–1586.

Rico, R., M. Sanchez-Manzanares, F. Gil, C. Gibson. 2008.

Team implicit coordination processes: A team knowledge-based

approach. Acad. Management Rev. 33(1) 163–184.

Robey, D., J. W. Ross, M.-C. Boudreau. 2002. Learning to implement

enterprise systems: An exploratory study of the dialectics of

change. J. Management Inform. Systems 19(1) 17–46.

Rosenman, M. A., G. Smith, M. L. Maher, L. Ding, D. Marchant.

2007. Multidisciplinary collaborative design in virtual environ-

ments. Automation Construction 16(1) 37–44.

Sangiovanni-Vincentelli, A. 2003. The tides of EDA. IEEE Design
Test Comput. 20(6) 59–75.

Senescu, R., R. Mole, A. Fresquez. 2006. A case study in struc-

tural drafting, analysis and design using an integrated intelligent

model. Joint Internat. Conf. Comput. Decision Making in Civil
Building Engineering, Montreal, 1797–1806.

Sharma, R., P. Yetton. 2003. The contingent effects of management

support and task interdependence on successful information sys-

tems implementation. MIS Quart. 27(4) 533–556.

Shea, G. P., R. A. Guzzo. 1987. Groups as human resources. G. R.

Ferris, K. M. Rowlands, eds. Research in Personnel and Human
Resources Management. JAI Press, Greenwich, CT, 323–367.

Sinreich, D., B. D. Nelkenbaum. 2006. Determining production

sequences for single-stage multifunctional machining systems

based on the tradeoff between fixture cost, re-fixturing and tool

replenishment. IIE Trans. 38(10) 813–828.

Spriggs, C. A., P. R. Jackson, S. K. Parker. 2000. Production team-

working: The importance of interdependence and autonomy

for employee strain and satisfaction. Human Relations 53(11)
1519–1542.

Staum, J. 2001. Simulation in financial engineering. B. A. Peters, J.

S. Smith, D. J. Medeiros, M. W. Rohrer, eds. Proc. 2001 Winter
Simulation Conf., IEEE Press, Los Alamitos, CA, 123–133.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

Bailey et al.: Understanding Technology Interdependence and Coordination in Knowledge Work
730 Organization Science 21(3), pp. 713–730, © 2010 INFORMS

Stohr, E. A., J. L. Zhao. 2001. Workflow automation: Overview and

research issues. Inform. Systems Frontiers 3(3) 281–296.

Strauss, A., J. Corbin. 1998. Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory,
2nd ed. Sage, Thousand Oaks, CA.

Streufert, S., U. Satish, P. Barach. 2001. Improving medical care: The

use of simulation technology. Simulation Gaming 32(2) 164–174.

Suchman, L. 2007. Human–Machine Reconfigurations: Plans and Sit-
uated Actions. Cambridge University Press, Cambridge, MA.

Thompson, J. D. 1967. Organizations in Action: Social Science Bases
of Administrative Theory. McGraw-Hill, New York.

Van der Vegt, G. S., O. Janssen. 2003. Joint impact of interdepen-

dence and group diversity on innovation. J. Management 29(5)
729–751.

Van der Vegt, G. S., E. Van de Vliert. 2005. Effects of perceived

skill dissimilarity and task interdependence on helping in work

teams. J. Management 31(1) 73–89.

Van der Vegt, G. S., E. Van de Vliert, A. Oosterhof. 2003. Informa-

tional dissimilarity and organizational citizenship behavior: The

role of intrateam interdependence and team identification. Acad.
Management J. 46(6) 715–727.

Wageman, R. 1995. Interdependence and group effectiveness. Admin.
Sci. Quart. 40(1) 145–180.

Wageman, R., G. Baker. 1997. Incentives and cooperation: The joint

effects of task and reward interdependence on group perfor-

mance. J. Organ. Behav. 18(2) 139–158.

Yang, Q. Z., Y. Zhang. 2006. Semantic interoperability in build-

ing design: Methods and tools. Comput.-Aided Design 38(10)
1099–1112.

Zantek, P. F., G. P. Wright, R. D. Plante. 2002. Process and product

improvement in manufacturing systems with correlated stages.

Management Sci. 48(5) 591–606.

Zuboff, S. 1988. In the Age of the Smart Machine: The Future of
Work and Power. Basic Books, New York.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.o

rg
 b

y
[1

30
.2

38
.1

75
.1

08
] o

n
06

 A
pr

il
20

17
, a

t 0
1:

45
 .

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll

rig
ht

s r
es

er
ve

d.

