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Abstract
IoT connects devices, humans, places, and even abstract items like events. Driven by smart sensors, powerful embedded 
microelectronics, high-speed connectivity and the standards of the internet, IoT is on the brink of disrupting today’s value 
chains. Big Data, characterized by high volume, high velocity and a high variety of formats, is a result of and also a driving 
force for IoT. The datafication of business presents completely new opportunities and risks. To hedge the technical risks posed 
by the interaction between “everything”, IoT requires comprehensive modelling tools. Furthermore, new IT platforms and 
architectures are necessary to process and store the unprecedented flow of structured and unstructured, repetitive and non-
repetitive data in real-time. In the end, only powerful analytic tools are able to extract “sense” from the exponentially grow-
ing amount of data and, as a consequence, data science becomes a strategic asset. The era of IoT relies heavily on standards 
for technologies which guarantee the interoperability of everything. This paper outlines some fundamental standardization 
activities. Big Data approaches for real-time processing are outlined and tools for analytics are addressed. As consequence, 
IoT is a (fast) evolutionary process whose success in penetrating all dimensions of life heavily depends on close cooperation 
between standardization organizations, open source communities and IT experts.
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1  Introduction

Sensor technology, microelectronics, communication tech-
nologies and internet-related software frameworks have 
made huge progress in recent years. Sensor technology has 
ignited machine-to-machine communication. Embedded 
microelectronics has led to remarkable levels of automation 
in production. Wireless and non-wireless communication 
technology has accelerated the data transfer significantly.

On the computational side, we are witnessing the accel-
erating dominance of the internet and innovative software 
paradigms enable new technologies like in-memory com-
puting, non-SQL database technology, cloud computing 
and Big Data processing. With significant progress in all 

technical dimensions, the window for disruptive intercon-
nectivity of machines and humans is now wide open.

In industry, computer-integrated manufacturing (CIM) 
and machine-to-machine (M2M) communication with their 
numerous standards and communication protocols have 
already changed the shop-floor. CIM and M2M connect 
machines, mainly as proprietary, closed systems.

The Internet of Things (IoT) is much more inclusive than 
CIM and M2M: everything is connected to everything else 
(hence also labeled “Internet of Everything”) using Internet 
fabric and protocols. It is the network of uniquely addressa-
ble physical assets equipped with sensors which nudge infor-
mation systems to capture, process, analyze, and exchange 
data—while including humans as sources, data sinks or 
something in-between.

This convergence of the internet and physical objects is 
a challenge which creates game-changing opportunities and 
risks for business development. IoT connects devices, peo-
ple, places, and even ideas or events. As a final consequence, 
this disruption is a result of the ability to “make sense” of 
data, i.e., to leverage the value of data.
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To hedge the technical risks, IoT requires standards and 
platforms to

•	 deal with the new complexity resulting from the interac-
tion between “things”, humans, systems and systems of 
systems,

•	 handle the exponentially growing flood of data and the 
requirements for real-time processing,

•	 integrate different tools and platforms to guarantee inter-
operability,

•	 extract sense from the data.

In this paper, we address this item list and outline critical 
dimensions for successful IoT projects.

2 � The era of the Internet of Things

According to experts, the world has had 27 billion connected 
devices in 2014, will spend 3 trillion US-$ on IoT in 2020 to 
produce 2.5 quintillion (10 to the power of 15) bytes of data 
per day or 20–40 MBs per machine per day. Several studies 
support this or a similar forecast (Kubach 2016; Hauptfleisch 
2015; Gartner 2014). It is expected that the connectivity of 
physical assets will change the entire manufacturing busi-
ness as it becomes possible to

•	 track when and how they are being used and to price and 
charge for them respectively,

•	 use the data from connected assets to remotely operate a 
customer’s equipment much more efficiently,

•	 enable condition-based predictive maintenance to mini-
mize unplanned downtime.

Examples for maintenance applications are path breaking:

•	 Siemens demonstrates predictive maintenance for high-
speed trains. For 26 trains, 400 sensors per train deliver 
200 bytes of data/s and GPS coordinates are additionally 
stored every 30 s to anticipate technical problems (VDI 
nachrichten 2016).

•	 Amsterdam Airport has equipped critical machines—
elevators, baggage transporters, etc.—with sensors while 
blending their data with available data from the airport 
(number of people going through the screening process, 
etc.) to estimate the relative health of machines and iden-
tify the best time to check machines for maintenance with 
the least possible impact (Cloudera 2016).

•	 Air France/KLM has equipped their A 380 airplane with 
24,000 sensors. These sensors generate 1.6 GB of data 
per flight (Heck and Franco 2016) and enable the detec-
tion of problems 10–20 days ahead.

When it comes to specific sectors of industry, utilities are 
expected to be in the no. 1 spot, followed by manufacturing 
and government. While the first two fields of application are 
obvious, it seems to be less evident regarding governmental 
scenarios. However and in particular, the concept of smart 
cities, with smart streets and lighting, smart waste disposal 
or smart traffic management relies heavily on IoT technol-
ogy. A smart cities scenario might include:

•	 sensors embedded in water pipes, sanitation services, 
traffic controller, parking meters and more, to monitor 
and flag capacity issues and automatically make adjust-
ments to traffic flow, pickup schedules, etc.,

•	 improved public safety through more effective and strate-
gic usage of policing resources for crime prevention and 
emergency responsiveness,

•	 improved safety for fire fighters through wearable sensors 
that can track their movement, ensuring that everyone 
gets out of dangerous situations.

In car technology, consumer orders will be connected 
directly to warehouses, humans to cars, cars to repair ser-
vices, insurance companies and traffic control. Already on 
the market is the Remote Online Service by Mercedes for 
monitoring cars from home or the office. One of the new 
features is GPS-based car monitoring which raises an alarm 
if the car leaves a defined radius.

In B2C, wearables are expected to penetrate the market 
quickly and data might be connected to doctors, hospitals or 
insurance companies. In retailing, one of the largest sources 
of value could be the sales lift in real-time with in-store per-
sonalized offers. This scenario will require the sophisticated 
integration of data from many sources:

•	 real-time location data (the shopper’s whereabouts in a 
store),

•	 data from sensors in a building,
•	 customer-relationship-management data, including the 

shopper’s online-browsing history,
•	 data from tags in the items on display, telling the cus-

tomer to enter a specific aisle,
•	 data from instant coupon companies using their data 

to motivate buying by sending a personalized offer to a 
mobile phone (Bughin et al. 2015).

As a result, companies have to evaluate their business 
models, tailor and probably enlarge their service business. 
There is no doubt that IoT technology will change business 
as we know it today.
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3 � Smart sensors as a driving force

IoT is sensor-enhanced Internet. Sensors attached to the 
Internet have the ability to source data and control actua-
tion. In a broader sense, sensors do not only include hard-
ware sensors and sensor networks but also software sen-
sors, able to capture real-world conditions of interest, such 
as user presence which can be detected via key clicks or 
mouse movements. Even when referring only to hardware 
sensors, their data become the standard source of data. These 
data are often imprecise, sometimes incomplete and flow 
continuously. They are “flat” in a sense that they line up like 
“pearls on a chain”.

Sensor technology has made significant progress in recent 
years and sensors will be the main data source in the future 
(Siprell 2016). High-speed, low-power, high-resolution, less 
noisy, compact sensors which consume less energy are the 
key factors for IoT. Sensor control air quality, traffic lights, 
pressure or temperature (Simmons 2014). The coupling of 
physical, chemical and biological components enables sen-
sor labs on-a-chip to be created for medical diagnosis, bio-
tech or chemical applications. Systems-on-a-chip integrates 
Bluetooth connectivity and creates a fully wearable sensor 
hub. Increasingly, sensor systems are becoming adaptive 
with feedback components, self-monitoring or self-cali-
bration abilities. While multi-sensor systems speed up the 
availability and quality of information, algorithms for data 
fusion are gaining in importance and paving the way for 
intelligent applications (Trankler and Kanoun 2001). Some 
basic dimensions of sensor fusion are outlined in Table 1.

Sensor data pose qualitative and quantitative challenges. 
With respect to quantity, it is often not possible or not rea-
sonable to handle the huge amount of sensor data with soft-
ware based on conventional IT paradigms (SQL data bases, 
standard multi-layer architectures, etc.). As a consequence, 
most data generated by IoT sensors remain unused. In the 
oil-drilling industry, one of the first users of sensors, only 
one percent of the data from 30,000 sensors on a standard 

oil rig is used, and even this small fraction of data is not ana-
lyzed for optimization, prediction, and data-driven decision-
making (Bughin et al. 2015).

The qualitative challenge is to develop and agree upon 
standards and practices that enable the exchange and integra-
tion of data from sensors across devices, users, and domains. 
The objective is to achieve semantic or conceptual interop-
erability, i.e., to represent information in a standard whose 
meaning is independent of the device or format generating 
or using it. Semantic interoperability enables service-level 
integration of IoT end-to-end systems with components from 
different vendors and guarantees the aggregation of data 
from different domains (Milenkovic 2015).

Meta-data are essential for IoT because they annotate 
sensor data to provide context. Meta-data of interest might 
comprise sensor type, serial number, and frequency of 
reporting, mobile or static location, manufacturer, domain, 
associations, access rights, privacy policy and restrictions, 
accuracy, calibration, and others. The primary function is to 
provide contextual semantics to create “rich data” for post-
processing services and applications. Furthermore, meta-
data enable valuable searches to be carried out. Sensor data 
are numbers that depend on meta-data to provide context and 
semantics, while, on the other hand, internet content search 
operates on documents “encoded” in natural languages with 
inherent dictionary-driven semantics.

The challenge for IoT is to devise a coordinated nam-
ing, taxonomy/ontology, and meta-data system. However, 
it is probable that no single data and metadata format will 
emerge and be adopted on a large-scale to, for instance, 
interconnect domains like building automation, transporta-
tion or energy management (Milenkovic 2015).

4 � Objects of interest and model building

IoT significantly changes the equation for modelling infor-
mation systems. With IoT, physical objects (refrigerators, 
machines, or cars), systems (shop-floors) and systems of 
systems (smart cities) must be modeled adequately. In these 
models, virtual “things” are proxies for physical and abstract 
entities that are described in terms of metadata, events, and 
properties. Meta-information becomes a central part of the 
model of sensors with information like history, place, state, 
context, event or contact with other objects (Raggett 2015) 
(Fig. 1).

The physical object model must adequately identify and 
represent

•	 the workload, i.e., an object is more or less active,
•	 time constraints, i.e., data from the object must be pro-

cessed in precisely defined cycles probably as short as 
possible,

Table 1   Dimensions of sensor data

Dimension Description

Sensitivity Ratio change of output to change of input
Linearity Measure for the constancy of ratio Input to 

Output
Measurement range Difference between min and max
Response time Time requirements for a change in input to be 

observable in the output
Accuracy Diff. between actual and measured values
Repeatability Diff. between successive meas. of the same 

entity
Resolution Small observable increment in input
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•	 robustness, i.e., data have to be processed with respect to 
the requirements of the business case (for instance, vital 
data of a person with respect to an insurance bonus),

•	 reliability, i.e., any blackout of an object might cause a 
severe problem for the whole system,

•	 flexibility, i.e., due to business, regulatory or security 
reasons the content, format or frequency of data supply 
might change (Lauby 2015).

Tools for modelling the IoT world have to chart a bridge 
between machines, machines and humans (operator, car 
driver, shop manager, etc.) and the internet.

5 � Germany’s approach for Industry 4.0 
and the industrial data space

5.1 � Industry 4.0

Industry 4.0 is being promoted by leading German industrial 
associations. The label stands for the complete digitization 
and integration of the industrial value chain by closely link-
ing information and communication technology with auto-
mation technology. The concept is based on a service-based 
architecture and includes accepted standards and protocols 
(ISO, IEC etc.). Ultimately, Industry 4.0 shall identify the 
relevant standards and protocols needed to enable the imple-
mentation of a smart factory and a digital value network 
(http://www.platt​form-i40.de/I40/Onlin​e-Bibli​othek​, dated 
August 29, 2016).

The objectives of Industry 4.0 are to make all relevant 
information of an industrial domain available in real time by 
connecting all relevant entities with each other and to have 
the capability to use the data that is generated to determine 
current process statuses at all times so as to derive the best 
possible value-adding decisions. Obviously, Industry 4.0 
will deliver an unending source of potentially valuable data.

Consequently, Industry 4.0 focuses on all three of the 
following dimensions on integration:

•	 Horizontal integration by value-adding networks: within 
the context of horizontal integration, interconnected 
companies—manufacturer, supplier, and development 
and logistics services—regularly exchange relevant 
information. This notion is to take account of customer-
specific requirements throughout all the different phases 
of a product’s lifecycle—including design, production, 
delivery and use.

•	 Vertical integration within automation hierarchies: ver-
tical standards link the different hierarchies within the 
automation technology, i.e., at actuator and sensor, con-
trol, and planning units.

•	 Self-optimization of resources: integrating the manu-
facturing process is essential to self-optimization. The 
availability of interrelated data and the competence to 
harness intelligent tools and concepts paves the way for 
value adding optimizations.

As a comprehensive technical framework for Industry 4.0, 
a Reference Architecture Modell Industry 4.0 (RAMI 4.0) 
has been specified. Arranged on three axes—functionalities 
within factories or facilities, lifecycle and value stream and 
layer-bases decomposition of a machine—technical stand-
ards define a common structure and “universal set of lan-
guages” for specific domains (Fig. 2).

To substantiate this reference architecture, the elements of 
the real manufacturing world must have an adequate virtual 
representation (both, the real and virtual dimension, coined 
Cyber-Physical System, CPS). In the context of Industry 4.0, 
this virtual image is not just a snapshot of the current status 
and current connections. Much more than that, it should also 
include all the information covering the complete lifecycle of 
the CPS—comprising relevant information from geometric 
data, mechanical properties or technical and security fea-
tures. All further lifecycle dimensions—engineering, com-
missioning and operations, maintenance and service—add 
additional data (http://www.zwei.org).

All in all, Germany’s Industry 4.0 approach wants to set 
an international reference framework for a comprehensive, 
well-structured, fast and flexible interaction between the 
CPSs on shop-floor level and the LOB IT systems (ERP, 
Manufacturing Execution System, CRM, logistics etc.) on 
the other end of the line.

However, Industry 4.0 is a comprehensive framework 
which has yet to prove its superiority over more pragmatic 
or restricted approaches. From the perspective of data man-
agement, the challenges are by all means enormous. The 
sensor-driven flow of data must be controlled and Industry 
4.0 demands powerful tools for (big) data integration, rout-
ing, validation or security management. There is no doubt, 

Fig. 1   Modelling interconnected objects in the real-world (according 
to Volker Gruhn 2017)

http://www.plattform-i40.de/I40/Online-Bibliothek
http://www.zwei.org
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that Talend’s Data Fabric will play a significant role in an 
Industry 4.0 environment.

Based on the reference architecture and asset models 
RAMI 4.0 will control and optimize the complete value 
chain of a production process. Following this concept, the 
machine producer and integrator can define smart services, 
and humans on the shop-floor will be able to react flexibly 
in case of a breakdown of one of the assets (objects). Even 
the ability to produce goods in batch-size one at reasonable 
costs seems possible.

5.2 � The industrial data space (IDS)

The industrial data space initiative was launched in Ger-
many at the end of 2014 by representatives from busi-
ness, politics, and research. The overall goal of IDS is to 

provide an IT reference architecture model for the safe, 
secure and transparent exchange of data between the many 
diverse producer and (possible) consumer of industrial 
data. Today, it is an explicit goal of the initiative to take 
both the development and use of the platform to an inter-
national level.

The most important requirements to be met by the refer-
ence architecture model are summarized in Table 2.

The reference model consists of four architectural 
elements:

•	 the business architecture addresses questions regarding 
the economic value of data, the quality of data, applica-
ble rights and duties (data governance), and data-man-
agement processes,

Fig. 2   The 3-dimensional 
Industry 4.0 cube

Table 2   Technical challenges 
and solutions (Kubach 2016)

Problems Direction of solutions

Complexity
Complex technology stack
Systems of systems

Ecosystem
Single point of contact
End-to-end solution
Openness and standards

Heterogeneity
Hardware
Scale
Data volume

Technology portfolio
No one-fits-all size
Multiple data base, messaging technologies

Security and privacy
Huge diversity of IoT device types with different capabilities 

and deployment scenarios
Global distribution of assets
Physical access to assets
Limited penetration of security mechanisms

Security-by-design
Security from the very beginning
Data sovereignty



	 AI & SOCIETY

1 3

•	 the security architecture addresses questions concerning 
secure execution of application software, secure transfer 
of data, and prevention of data misuse,

•	 the data and service architecture specifies in an applica-
tion and technology independent form the functionality 
of the IDS, especially the functionality of the data ser-
vices, on the basis of existing standards (vocabularies, 
semantic standards, etc.),

•	 the software architecture specifies the software compo-
nents required for pilot testing of the IDS.

Central elements of this architecture (Fig. 3) are the con-
nector for the exchange of data, the broker for the mediation 
of data offers and requests an app store. The app store shall 
offer software code which can be injected into the connector 
to enrich the data with additional value (from meta-data to 
analytics).

6 � Industrial internet consortium (IIC) 
and the W3C web of things interest group

IIC is an international, open membership, not-for-profit 
consortium trying to define an architectural framework for 
an industrial internet. The mission is to coordinate ecosys-
tem initiatives to connect and integrate objects with people, 
processes and data using common architectures and open 
standards (http://www.iicon​sorti​um.org/IIRA.htm, dated 
August 29, 2016).

While the focus of RAMI 4.0 is on manufacturing 
in depth, with representations of the level of hierarchy, 
life cycle and value-stream level of an object, the Indus-
trial Internet Consortium (IIC) is propagating a different 
approach:The IIC reference architectur (IIRA) focuses on 
cross-multiple application domains and aims to provide 
guidance for the development of systems, solutions and 
application architectures. Although IIRA is at a high level 
of abstraction, it will deliver the foundations for the vocabu-
lary and the design patterns for completely different IoT use 
cases.

This difference between RAMI 4.0 and IIC can be out-
lined with an example from the automotive business:

•	 RAMI 4.0 addresses the shopfloor, i.e., the manufactured 
car with its many components,

•	 in an IIC scenario, a car is an element in a broader con-
text, i.e., parked at home, charging its batteries by a con-
nection to a smart grid, talking to other cars on the road, 
traffic light systems, etc.

To a certain extent, both approaches can be regarded as 
complementary.

The Web of Things Interest Group propagates a 
WebOfThings interaction model. This model is based on 
properties, events, and actions. Properties define the state 
of the thing and it’s configuration and settings; events are 
state changes in properties that the thing is able to report 
or send; actions are state changes which the application 

Fig. 3   Software dimensions 
in the IDS (according to IDS 
2017)

http://www.iiconsortium.org/IIRA.htm
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invokes on a thing (Koster 2016, http://www.w3.org/WoT/
IG, dated August 29, 2016).

7 � IoT platforms in the cloud

The ambitious goal to develop accepted, overarching 
IoT standards has to compete with a growing number of 
cloud solutions. These solutions allow for straight-forward 
implementation of IoT scenarios. The promise made by 
these IoT application enablement platforms (AEP) is to 
support affordable solutions by easily transferring sensor 
data to the cloud. Characteristics are ease and flexibility 
of deployment, scalability, developer-friendly user inter-
faces and cogent systems architectures. Essential features 
to enable cloud connectivity are, among others, network 
security, networking protocols, responsive performance, 
reliability and resilience, scalability (Ayla 2015). Analyt-
ics tools and dashboards enable users to track, monitor or 
match data to gain immediate insights. Furthermore, data 
can be forwarded to external systems like ERP or CRM 
(Fig. 4).

The claim is to be able to connect nearly any device 
to the cloud while offering all of the interfaces, tools and 
premium services needed for a manufacturer to manage, 
provision, and analyze their IoT deployment. With these 
Software-as-a-Service-platforms it is no longer necessary 
to invest in stack development, end-to-end security, infra-
structure, and other IoT “must haves”.

8 � Big Data technology

8.1 � From Master Data Management to Big Data

Today, companies have to handle huge amounts of data, 
stored in a variety of data bases, driven by ERP software, 
CRM or shop systems. Software for Master Data Manage-
ment (MDM) is useful to normalize data, detect and correct 
errors (data quality module) and enrich data—and can be 
used to create a single source of truth for enterprise criti-
cal data. Often, MDM software cooperates with a product 
management system (PIM) which adds pictures and further 
marketing relevant data. An Enterprise Service Bus (ESB) 
can be responsible for synchronizing any change of data via 
the MDM (Fig. 5).

However, MDM is not Big Data. A huge amount of 
IoT data, often generated in real-time, poses very specific 
challenges.

8.2 � Characteristics of Big Data

From the IoT perspective, Big Data is a subset of the IoT 
technology where Big Data software addresses data handling 
and IoT takes responsibility for sensors, devices, and data 
delivery (Dull 2015).

Big Data scenarios are usually characterized by the vol-
ume, velocity, and variety of data. Additional criteria might 
be Vs like Validity, Veracity, Value, and Visibility. The basic 
intention is to collect as many data as possible to detect 
semantic patterns and correlations

Fig. 4   Platforms in the cloud 
(e.g., Ayla or Cumulocity)

http://www.w3.org/WoT/IG
http://www.w3.org/WoT/IG
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•	 in huge data oceans (volume) which,
•	 fill up continuously or event-driven (velocity),
•	 in a structured or unstructured format (variety).

IoT and Big Data are clearly connected intimately as 
billions of internet-connected “things” generate massive 
amounts of data (McLellan 2015).

Especially in scenarios with a constant in-flow of data 
(real-time) it is necessary to efficiently store and analyze 
data on-line and off-line. This challenge requires new stor-
age concepts, high performance processing approaches, etc. 
The Hadoop ecosystem is at the forefront of the technology.

8.3 � The Hadoop ecosystem

With relational database technology alone Big Data is 
not possible, cumbersome or expensive. The open source 
Apache Hadoop software library is the most prominent open 
source framework that allows for the distributed processing 
of large, structured and unstructured datasets across clus-
ters of computers (Inmon and Linstedt 2015). Hadoop is 
designed to scale up from single servers to thousands of 
machines, each offering local computation and storage.

A complex Hadoop ecosystem has continuously evolved 
with tools and frameworks for different types of storage, 
processing, data integration, resource management, security, 
analytics, search, and data discovery. This evolving ecosys-
tem is based on numerous software “modules” (Hadoop 
2016):

•	 Hadoop Distributed File System (HDFS) provides high-
throughput access to application data in a singular virtual 
place; HDFS facilitates rapid data transfer among the 
nodes in a cluster, ensuring resilience in case of node 
failures. The data can be of any format, i.e., structured, 
semi-structured or unstructured.

•	 YARN is a framework for job scheduling and cluster 
resource management (SQL interactive engines, batch 
engines or real-time streaming engines).

•	 MapReduce enables the parallel processing of large sets 
of data in distributed clusters.

•	 Sqoop provides UNIX-based commands to import and 
export data from RDBMS to HDFS and vice versa.

•	 Cassandra, Hbase and the like are NoSQL databases 
designed to handle large amounts of data across several 
nodes in a cluster setup.

•	 Apache Kafka is a tool for reliable ingestion of high 
volume streaming data.

•	 Hive and Impala are SQL interfaces for data summari-
zation and ad hoc querying.

•	 Mahout is a scalable machine learning and data-mining 
library.

•	 Pig, a high-level data-flow language and execution 
framework for parallel computation.

There are manifold technical details and limitations 
which must be carefully analyzed with respect to the spe-
cific application scenario. High-level requirements for a 
Big Data architecture must address (Fig. 6):

•	 Reliable data ingestion
•	 Flexible storage and query options, and
•	 Sophisticated analytics tools.

To resolve the issue of latency with a Hadoop system, 
the Lambda architecture was developed (lambda-arechitec-
ture.net). The basic notion of Lambda is to serve a batch 
and a speed layer where the batch layer collects the data 
for off-line analysis and the speed based on Spark (in-
memory technology) handles the most recent data by cre-
ating real-time views.

Fig. 5   Master data management 
(MDM) depending architecture 
based on an enterprise service 
bus (Sepia Altera, no year)
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The Hadoop ecosystem is gradually turning into a gen-
eral-purpose data-operating system and is the leading frame-
work for dealing with an extraordinary influx of datasets, 
often with a need to compute in real-time.

9 � Platforms for data analytics

The value of IoT lies in the data generated by the connected 
objects and the ability to identify value in data is a pre-
requisite for successful B2B. The question is how to become 
a data-driven enterprise. The answer includes a re-evaluation 
of the given data integration solution and an analysis of the 
current software development life-cycle procedures (Wilmer 
2016) (Fig. 7).

While methods for descriptive and diagnostic statisti-
cal analytics have been well-established for decades it is 
now possible to address predictive and prescriptive ana-
lytics, i.e., to get an insight into “What will happen?” and 
“How can we make it happen?” Consequently, innova-
tive companies transform themselves into “mathematical 

corporations” with data stewards, data scientists, data 
architects, data artists or information brokers (Charan 
2015; Provost and Fowcett 2013).

IoT solutions in the cloud and Big Data frameworks 
have embedded analytics tools, but these tools have to 
compete with advanced products equipped with sophis-
ticated statistical and machine learning algorithms. Fur-
thermore, self-service requirements pose very specific 
challenges concerning the usability of the tools.

A close link between Big Data architectures and analyt-
ics is essential for the implementation of predictive ana-
lytics. The preferred programming language R and tools 
(libraries and models) for statistics and machine learning 
have paved the way for fast embedded analytics and self-
service for technicians and managers. These tools com-
bine methods like regression analysis, similarity matching, 
clustering attempts, profiling and many more (http://www.
tibco​.com, dated August 29, 2016).

Nevertheless the significant technical progress: Any sta-
tistical or machine-learning toolbox requires a clear under-
standing of four business dimensions in advance (Provost 
and Fawcett 2013):

•	 timeliness, i.e., companies need to understand what 
timely information is for a specific business case (expi-
ration speed),

•	 data organization, i.e., data needs to be pre-processed and 
organized in a way that it can be further analyzed (data 
preparation),

•	 accuracy, i.e., companies need indicators to define the 
quality of the data,

•	 relevance, resulting only from the specific business 
requirements.

Fig. 6   Hadoop ecosystems and its major components dark and middle 
grey: Hadoop core, black: spark components, light grey: unsupported 
add-ons 

Fig. 7   From hindsight to insight 
to foresight (based on HP 2014)
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10 � Challenges

10.1 � Technical challenges

IoT requires high system stability, complete coverage and 
guaranteed low latency. Any system failure or connection 
loss can cause damage running into millions (Table 3).

The complexity resulting from the heterogeneity of 
the different hardware and software components poses a 
new challenge. Security and privacy issues need special 
attention for obvious reasons. Mature software platforms 
have to address these dimensions. There is no “one-fits-all-
needs” solution but CIOs have to carefully evaluate what 
fits best to their line-of-business.

The preferred answer to this technological complexity 
of Big Data is open source technology based on Hadoop. 
A discussion of the advantages of open source software 
can be found in (Jesse 2014). However and in general, 
the challenges of security and privacy for IoT have not 
been solved yet and are expected to pose a growing threat 
(McLellan 2015).

10.2 � Transformational challenges for business

From the perspective of business development, IoT, Big 
Data and analytics disrupt businesses and address numer-
ous action items:

•	 companies have to align and balance their interests with 
other companies along the value chain and end users who 
create, own, or service a product (the data source),

•	 they become hardware and software companies at the 
same time; embedded software needs to be updateable 
and supported, probably with numerous versions (addi-
tional complexity),

•	 as data is constantly streamed, the classic information 
pull (gather, analyze, decide) has to be complemented 
by a real-time business process,

•	 the vulnerability of companies is increasing significantly 
and IoT has to invest in security to guarantee physical 
control and monitor any manipulation of data (Rans-
botham 2015; Bughin et al. 2015).

Moreover, management has to align their IT and oper-
ational strategy tightly and create new organizational 
responsibilities:

•	 chief financial, marketing, and operating officers as well 
as leaders of business units will have to disrupt their 
silos,

•	 companies need to endow employees with new skills, so 
the organization becomes more analytically rigorous and 
data driven,

•	 analytics experts and data scientists must be connected 
with executive decision-makers and with frontline man-
agers to give impact. In some cases, the decision-makers 
will be algorithms (Bughin et al. 2015; Provost and Faw-
cett 2013).

11 � Conclusions

Sensor technology—from simple proximity measuring to 
complex bio-sensing—is developing fast. Numerous con-
nectivity standards are available. In this document, the 
focus is on the need for software standardization and the 
contribution of software platforms to handle the unprec-
edented complexity of applications. Data, created by sen-
sors, must be enriched by meta-data to provide meaning. 
Programming languages, data-encoding formats and proto-
cols need to be regarded with respect to their relevance for 
IoT. Identity management for devices, users, application and 
services has to be addressed. To verify data and metadata, 

Table 3   User requirements for an industrial data exchange

User requirements

Data sovereignty The data owner specifies the terms and conditions of use for data
Decentral data management Data management remains with the data owner, if desired
Data economy Data is viewed as an economic asset. It can be distinguished into three categories: private data, i.e., data 

belonging to a specific value creation chain, which is available to selected companies only, and public data 
(weather or traffic information, geo data etc.)

Value creation The IDS facilitates the creation and use of smart services and digital business models
Easy linkage of data Linked-data concepts and common vocabularies facilitate the integration of data between participants
Trust All participants, data sources, and data services of the IDS are certified against commonly defined rules
Secure data supply chain Data exchange is secure across the entire data supply chain, i.e. from data creation to data capture to data usage
Data governance Participants jointly decide on data management processes as well as on applicable rights and duties
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their provenance and the location of the sensors are relevant. 
The modelling of these tightly interconnected items leads to 
further questions.

IoT is on a fast accelerating path with evolving standards, 
technologies and platforms. As of Jan 2016, with over 275 
vendors and products in the data platform and analytics land-
scape (451 Research 2016) it is no surprise that IoT and Big 
Data suffers from a lack of interoperability with data silos, 
high costs and limited market potential.

From the business perspective, integration has a vertical 
and horizontal dimension. On the vertical level, technical 
processes will be integrated with business processes. From 
a horizontal perspective, IoT builds a bridge between the 
boundaries of companies and integrates the complete value 
chain.

IoT and Big Data technology come from different back-
grounds. IoT is driven by sensor technology and, more gen-
erally, from a hardware perspective. Big Data, however, 
has deep roots in new software paradigms developed by the 
Internet and social media enterprises like Google, Facebook 
or Yahoo. Hardware and software are two sides of the same 
coin. In this paper, we have briefly addressed the software 
side, i.e., concepts and platforms as enablers for huge data-
driven IoT solutions. Furthermore, we indicated the need for 
powerful tools to analyze the deeper value of data.

At the end of the day, IoT opens up considerable oppor-
tunities. With the open-source Hadoop ecosystem, accepted 
exchange formats and a growing set of standards, a conver-
gence or “blending” of platforms is on its way.
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