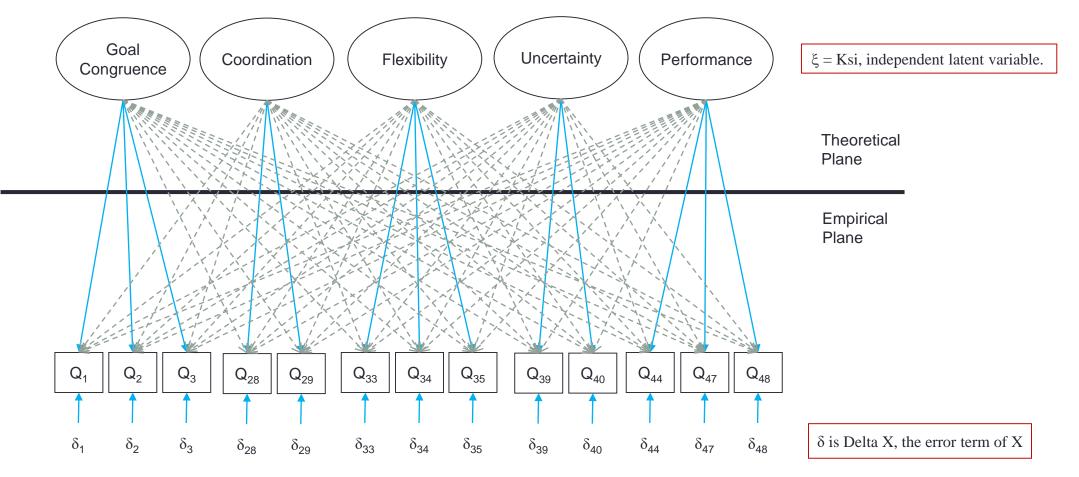
STRUCTURAL EQUATION MODELING IN LISREL

Preparing data for LISREL

We have a dyadic dataset (buyer and seller). We are using only the seller side.

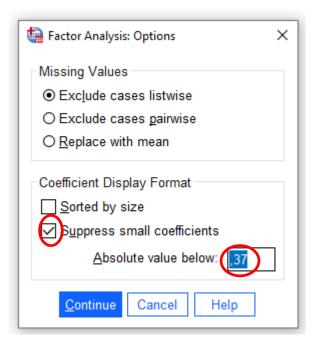


- The fundamental difference between EFA and CFA (in LISREL) is that EFA does not have significance tests for model fit.
- EFA suggests a factor structure.
- In CFA we impose and test a factor structure.

In EFA, all these relationships are estimated.

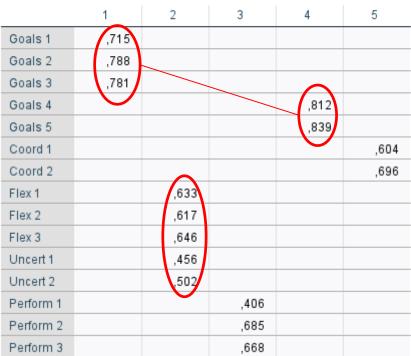
In CFA, only the solid lines (the relationships we specify) are estimated.

This is called a measurement model.


An EFA Example

Cancel

Continue


tactor Analysis	Rotation ×			
Method				
Q None	O <u>Q</u> uartimax			
O <u>V</u> arimax	O <u>E</u> quamax			
O Direct Oblin	nin O <u>P</u> romax			
<u>D</u> elta: 0	Kappa 4			
Display				
<u> <u> R</u>otated solution <u> </u></u>				
Maximum Iterations for Convergence: 25				
<u>Continue</u> Cancel Help				

Problems....

Remove Goals 4 & 5

Rotated Factor Matrix^a Factor

No suppressed values

Rotated Factor Matrix^a

	Factor				
	1	2	3	4	5
Goals 1	,724	,284	,229	,173	,194
Goals 2	,792	,248	,249	,224	,188
Goals 3	,776	,219	,200	,234	,149
Coord 1	,304	,251	,261	,831	,144
Coord 2	,365	,341	,248	,501	,120
Flex 1	,258	,626	,294	,228	,170
Flex 2	,254	,642	,292	,221	,185
Flex 3	,277	,553	,224	,156	,267
Uncert 1	,243	,316	,320	,149	,376
Uncert 2	,228	,246	,215	,123	,909,
Perform 1	,297	,340	,428	,197	,098
Perform 2	,190	,230	,693	,200	,176
Perform 3	,221	,244	,666	,147	,169

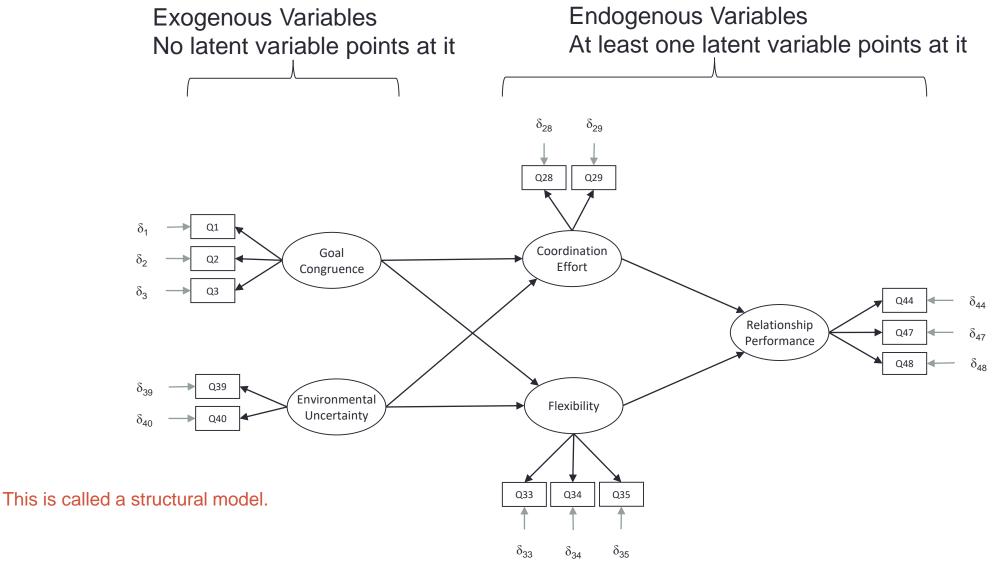
The Annual Address and the second state of the

Values suppressed below 3.7

Rotated Factor Matrix^a

	Factor				
	1	2	3	4	5
Goals 1	,724				
Goals 2	,792				
Goals 3	,776				
Coord 1				,831	
Coord 2				,501	
Flex 1		,626			
Flex 2		,642			
Flex 3		,553			
Uncert 1					,376
Uncert 2					,909,
Perform 1			,428		
Perform 2			,693		
Perform 3			,666		

In CFA we do not estimate the blank values.


Notation

Ovals are latent unobserved variables

Squares are observed variables

- \rightarrow Straight arrows indicate causality
 - Curved arrows indicate association/correlation

Example of Theoretical Model

Pre-CFA (LISREL)

The more you know about your data BEFORE going into CFA – the better!

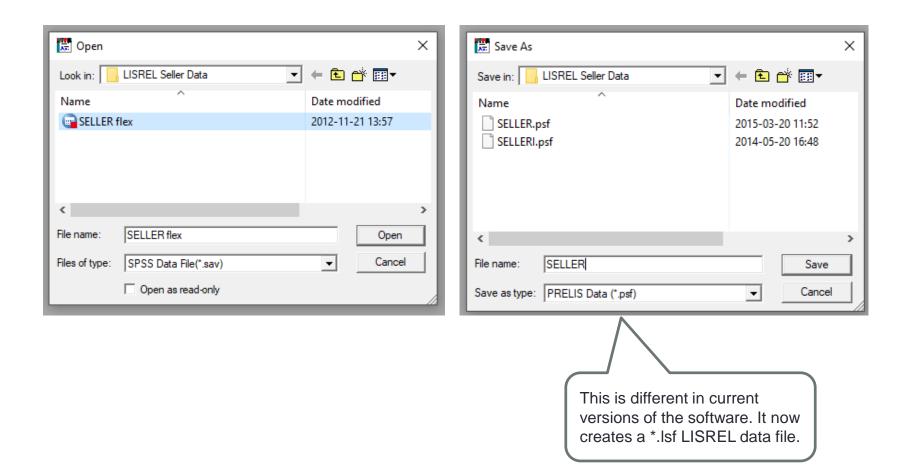
Typical data screening procedures in, for example SPSS.

- Missing Data.
- Outliers.
- Normality.
- Relationships between variables.
- I Impute missing data AFTER moving to PRELIS/LISREL
- How much missing is a problem?
 - 10% cutoff for no problem.

Moving to PRELIS/LISREL

Proverb: There is more than one way to skin a cat!

SPSS > PRELIS > LISREL (old versions) SPSS > LISREL (new versions)



Procedures

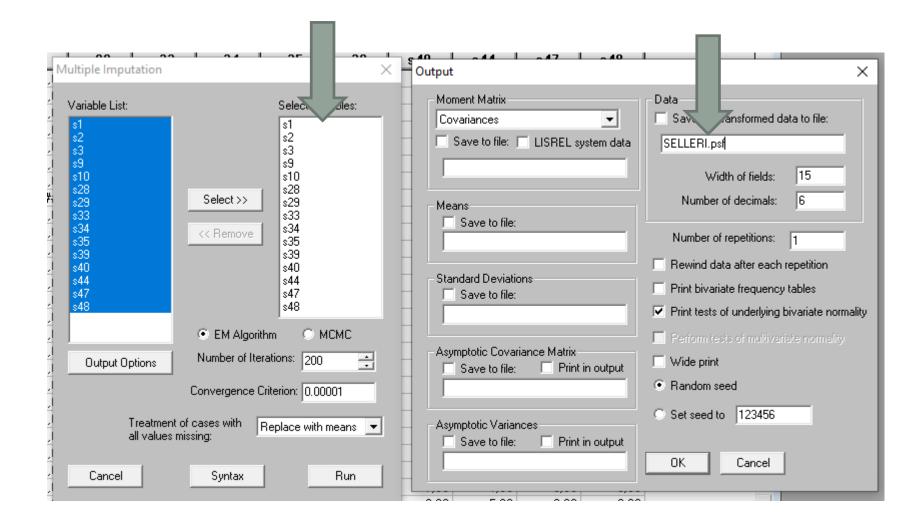
Almost identical between versions

- Save your data as, for example, an SPSS data file.
 - Other file formats are fine as well.
- Do not mix version folders (e.g. 8.8 & 10.30)
- Open LISREL (PRELIS)
- Import Data choose the SPSS.dat file, name the PRELIS (*.pls) or LISREL (*.lsf) file save.
- Does it look OK?

Import data

Define Variables

- Data Define Variables
- In 'SELLER' data set select all variables
- Check 'Variable Type' are they all ordinal?
- Define Missing Values as -999999 (or whatever you chose)


Save

SELLER.psf			7							
	s1	s2	s3	s9	s10	s28	s29		s34	s35
1	4,00	4 0	4 00	3.00	2.00) 6,00	2,00	1 🗖	5,00	5,00
2	4,00	Define Variables			\times) 3,00	3,00	ل	3,00	6,00
3	3,00						1 00		C 00	<u> </u>
4	4,00	s1		Inse	rt	Missing	/alues for s1	🔻		×
5	5,00	s2 s3 s9 s10)				ок
6	4,00	. s9		Renar	me		nissing values			
7	4,00	s10					ing values		(Cancel
8	6,00	\$28 \$29 \$33 \$34 \$35 \$39 \$40		Variable	Туре	.999	999.(
9	5,00	\$33							_	
10	2,00	s34		Category	Labels) Low		High		pply to all
11	6,00	\$35		11 · · · ·]				
12	5,00	s40		Missing V	alues) Global mi	ssing value	-9999999.(
13	6,00	s44		ОК	1		ssing value			
14	6,00	s47 s48			_	1		Low	High	
15	2,00	340		Cano	el			~ · · · ·	C. Deineire	
16	-9999999,00) Deletion		Eistwise	C Pairwise	
17	5,00	To select more				2,00		########	#######	5,00
18	4,00	time,hold down			cking	5,00		6,00	7,00	7,00
19	6,00	on the valiable:	s to be sei	lecteu		5,00	6,00	5,00	4,00	4,00
20	5,00			7.00	7.00	2,00		5,00	5,00	6,00
21	6,00	6,00	6,00	7,00	7,00	6,00	6,00	6,00	6,00	6,00

Impute Missing Values

- Statistics Multiple Imputation
- Use 'EM algorithm'
- Output options Save the transformed data file NAME (optional)
- Default: imputed-data
- If needed, change data file name in folder.

Multiple Imputation

Create Input Matrices

Several types of out- inputs

- Covariance matrices
- Correlation matrices

Statistics – output options – moment matrix Ordinal Data

- Polychoric Correlations save to file "name.pm"
- Asymptotic covariance matrix "name.acp"
 Continuous data

Continuous data

- For Covariances: "name.cm"
- For Correlations (pearson) "name.km"

Move to LISREL

Input Matrices

ORDINAL DATA Polychoric correlation matrix Asymptotic covariance matrix

mation St	atistics Graphs Multilevel SurveyGLIM View Window Help	
12 12		
	Output	×
2	Managet Martin	-
4,00	Moment Matrix Data	
	Correlations	
2,00	Save to file: 🔲 LISREL system data	
5,00	seller.pm	
3,00	Width of fields: 15	ĺ
4,00	Means Number of decimals: 6	
6,00	Save to file:	
4,00	Number of repetitions: 1	
2,00	Rewind data after each repetition	
6,00	- Standard Deviations	
4,00	Save to file:	
6,00	Print tests of underlying bivariate normali	ity
5,00		
3,00	Asymptotic Covariance Matrix	
5,00 5,00	Save to file: Print in cutput Wide print	
2,00	seller.acp	
5,00		
3,00	Asymptotic Variances	
6,00	Save to file: Print in output	
4,00	OK Cancel	
4,00		
3,00		

Covariance Matrix

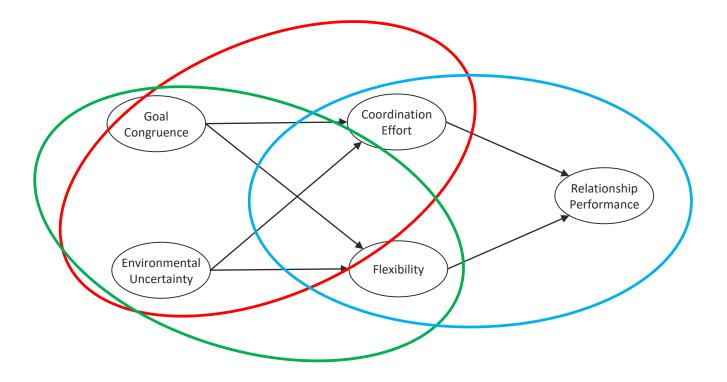
Output	×
Moment Matrix Covariances	Data Save the transformed data to file:
Save to file: LISREL system data	
	Width of fields: 15
Means	Number of decimals: 6
	Number of repetitions: 1
Standard Deviations	 Rewind data after each repetition Print bivariate frequency tables
	 Print tests of underlying bivariate normality Perform tests of multivariate normality
Asymptotic Covariance Matrix	☐ Wide print
	Random seed
Asymptotic Variances	C Set seed to 123456
	OK Cancel
<u>,00 - 5,00 - 5,00 - 3,00</u>	2,00 4,00 4,00 5

Pearson Correlation Matrix

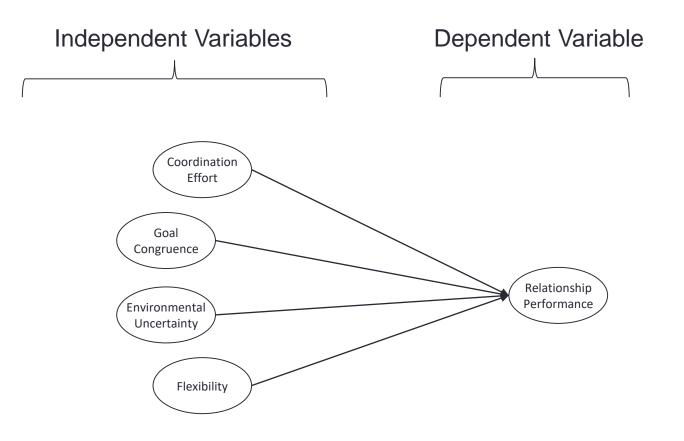
Output	×
Moment Matrix Correlations	Data Save the transformed data to file:
Save to file: LISREL system data	Width of fields: 15
Means	Number of decimals: 6
	Number of repetitions: 1
Standard Deviations	 Rewind data after each repetition Print bivariate frequency tables Print tests of underlying bivariate normality
Asymptotic Covariance Matrix Save to file: Print in output	 Perform tests of multivariate normality Wide print Random seed
Asymptotic Variances Save to file: Print in output	© Set seed to 123456 OK Cancel

seller.acp	2014-05-20 16:49	ACP File	44 KB
seller.cm	2021-03-18 10:07	CM File	2 KB
seller.km	2021-03-18 10:08	KM File	2 KB
SELLER.OUT	2021-03-18 09:57	OUT File	18 KB
seller.pm	2014-05-20 16:49	PM File	2 KB

These are the input files for you LISREL models. It is a good idea to check the folder to see that there is data in them.


Raw Data Alternative

- LISREL 11 can read the data directly from the raw data file *.LSF.
- This allows you to use a windows interface.
- It automatically estimates the proper input matrices and selects the estimation method (e.g. maximum likelihood), but you have less control over the analysis.


IF YOU ONLY HAD MULTIPLE REGRESSION

We have to aggregate the indicators

Instead of the SEM Model

Or

